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ABSTRACT

A simulation technique is described for the calculation of semiconductor
electrode properties at steady state, e.g., at equilibrium in the dark or under
constant illumination. Integration of the continuity equation with respect to
distance at the steady state yields a relation between the light flux and free
carriers, which can be used in a recursion relation to determine the free
carrier concentrations and the electric field within the space charge region
of the semiconductor electrode. The technique is used to calculate the Boltz-
mann distribution within the semiconductor electrode and to determine the
photopotential in the absence of faradaic current and surface states.

In a previous paper in this series (1) we described
a digital simulation method for semiconductor elec-
trodes and the formation of the space charge region
in a semiconductor electrode upon charge injection. The
main motivation for these simulations has been the
recent interest in semiconductor electrodes and their
application to photoelectrochemical cells and devices
(2). One characteristic of interest is the change in
surface potential of a semiconductor/electrolyte inter-
face under illumination, the photopotential. Although
theoretical treatments of the photopotential have been
given (3,4), and its magnitude related to the semi-
conductor properties, surface potential, and light in-
tensity, these treatments usually involve restrictive
conditions, (e.g., total light absorption in the space
charge region, minority carrier diffusion length much
larger than the size of the space charge region). We de-
scribe here the digital simulation of the steady-state
photopotential which arises upon illumination of a
semiconductor electrode previously brought to a given
potential and now held at open circuit. Charge transfer
reactions, e.g., open-circuit corrosion, are assumed not
to occur during this illumination.

Physical Model

The general equation for the processes within a
semiconductor electrode under illumination can be ob-
tained by considering the creation of electron/hole
pairs by light absorption, their mass transfer by diffu-
sion and migration, and their recombination. Thus the
change in concentration of holes, p, at a given location
in the semiconductor is given (in one-dimensional
form) by

9p/ot = djp(x) /o + I,ae—2x — R(x) 1]

where I, is the intensity of light incident on the semi-
conductor/electrolyte interface (taken as x = 0), a is
the coefficient of light absorption of the semiconductor,
ip(x) is the total flux of holes at x, and R(x) the rate
of electron/hole recombination. We are concerned here
with the steady-state photopotential. Thus with gp/dt
= 0, integration of Eq. [1] yields

'z
dp(x) — §p(0) =_£ R(x)dx — I, (1 — e—2x) [2]

where j,(0) is the flux of holes crossing the interface,
or the hole contribution to the faradaic current density,
ip. Thus

2z
Jp(x) =ip/e — Io(1 — e—ax) 4 J; R(x)dx [3]

A similar expression can be written for electrons
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x
In(x) =in/e 4+ Io(1 — e~2x) — .’; R(x)dx [4]

where jn(x) and i, are the electron flux and the elec-
tron contribution to the faradaic current density, re-
spectively. The light flux and electron flux are taken
as positive going into the semiconductor from the
solution and the hole flux is positive going out of the
semiconductor to the solution. (A representation of the
fluxes is shown in Fig. 1.) Equations [3] and [4] hold
at all x, both within and outside of the space charge
region. The net current density at any =z, %, is given
by Eq. [5]

Jp(x) + jn(x) = (ip +in)/e=1i [5]

i.e., at steady state a current (which may be zero)
flows through the semiconductor phase. Equations [3]
and [4] are employed in a digital or finite difference
form in the simulation. The procedure follows the
usual digital simulation approach (5). The semicon-
ductor region of interest is divided into space elements
of width Ax which are assigned an index K, from
K = 1 (surface element) to K = KMAX (Fig. 1). The
carrier concentration within each element is assumed
constant and represents the average value of px and ng
for holes and electrons, respectively, at that location.
The electric field at the left boundary (the solution
side) of element K, i.e., between it and element K — 1,
is denoted Ex and the carrier concentration at this
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Fig. 1. Digital representation of the semiconductor phase and
flux notation.
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Table I. Comparison of differential and finite difference notation

Quantity

Differential notation

Finite difference notation

Distance, x

(K — %)Ax

Migration flux of holes, jp/m upEp %UnEr (PE + PER-1)

Diffusional flux of holes, jp.4 Dy (9p/ax) Dy (pE-1 — PE)/AX
2 EMAX

Electric field, E (1/eo€r) Q(x)dx

]

Recombination rate, R(x) (e.g., for
excess holes in an n-type semi-
conductor) *

Krn(x) (p(2) — pe9)

(eAx/eoer) 2 (pg — ng + Np — Ni)

K=0
(ng/rpnv) (DE — DX°1)

* op(x) /3t = km(x)p(x) -~ kt, where K is the recombination rate constant given by 1/7pn» and k¢ is the formation constant, given
by krneaped (the superscript eq denotes the equilibrium concentrations in the n-type sem.conductor). The equation in the table results

when ned =~ n(x),

boundary is taken as the average of that of the two
adjacent elements [e.g., %2 (px + Pr-1)]. A comparison
of the differential and finite difference notation used
in the simulation for expressing fluxes and other quan-
tities of interest is given in Table L

Initial conditions. The Boltzmann distribution.—The
distribution of the carriers and the electric field in the
semiconductor biased to a known potential (thus con-
taining a known excess charge) and at equilibrium in
the dark serves as the initial state preceding calcula-
tion of the photopotential. This equilibrium distribution
is of fundamental importance in understanding and
predicting the electrochemical behavior of semicon-
ductor electrodes and is assumed to be essentially
obeyed even in nonequilibrium situations (4-6). This
distribution is usually obtained by using Fermi sta-
tistics for the occupancy of allowed energy states for
which exp[(E — Er)/kT] << 1 and which physically
means that at low occupancy, spin requirements may
be relaxed. In addition, the Poisson equation must be
solved using charge density terms which are based on
the equilibrium distribution of carriers as functions of
a coordinate which is not yet explicitly known (7). In
general, a closed-form explicit relation between the
potential and its gradient cannot be obtained for a
doped semiconductor (8). At equilibrium in the dark,
there is no faradaic current and no excess free car-
riers to give nonequilibrium recombination effects.
Thus Eq. [3] and [4] yield

Jp(x) =jn(x) =0 (for all x) [6]

and at the boundary of each element, the migrational
flux is compensated by the diffusional one for both
electrons and holes. Equating these fluxes using the
digital-form equations in Table I and rearranging, we
obtain

(Dp/Aax) — 0.5ULEKk

(Dy/Ax) + 0.5UzEx
(Dn/Ax) + 0.5UxEx

ng = nK—1 [8]
(Dn/Ax) — 0.5ULEx

Equations [7] and [8] are used as recursion relations in
an iterative computation beginning with the second

DPE-1 [7]

PK =

element (K = 2). For the first element (the semi-
conductor surface) the boundary conditions are (9)

p1 = p° exp (eVy/kT) [9a]

ny = noexp (—eVy/kT) [9b]

where Vs is the applied surface potential governing the
distribution. The U and D values in Eq. [7] and [8] are
related to each other via the Einstein relation

U(cm?sec—1 V—1) = D/kT = 39D (cm?sec—1) [10]

at room temperature. A recursion relation for the
electric field, Eg, which takes account of the semi-
conductor properties (dielectric constant, doping level)
is obtained from Gauss’ law

Ex = Ex+1+ (€Ax/eeer) (P — nx + Np — Na) [11]

The boundary condition used with this relation is that
in the bulk semiconductor (K = KMAX), Ex = 0. The
simulation proceeds by using the applied potential in
the boundary condition, Eq. [9], and then calculating
7k and px (K = 1 to KMAX) assuming any arbitrary
initial distribution (usually taken as a uniform one,
i.e., a flatband condition). The Ex values are then cal-
culated, using Eqg. [11]. Alternate calculations of ng,
Pk, and Ex are continued until the three arrays are
constant with respect to further iterations. The result-
ing values, besides satisfying Eqg. [7]-[11], also show
the following features: (i) a numerical integration
over the electric field from the bulk to the surface of
the semiconductor yields the surface potential gov-
erning the distribution (which enters into the simula~
tion only in assigning p; and m;), thus demonstrating
self-consistency in Vs; (i) the product pknk is con-
stant and equal to n;? (e.g., for Ge n;2 = 6.25 x 1016
em~—6 at room temperature) for all K.

A problem arises in the selection of KMAX. If this
value is too large, the simulation does not converge to
a constant solution. Since the value of KMAX, repre-
senting the thickness of the space charge region, is not
known in advance, an arbitrary value which will yield
a solution is chosen and when a convergent solution is
obtained, KMAX is increased. The calculation termi-
nates with the highest value of KMAX which still
gives a constant solution. Inspection of the result shows
that only the very diffuse part of the space charge re-
gion, which contributes insignificantly (<1%) to the
electrical state (fields, potentials) of the semiconductor
cannot be displayed.

Note that in contrast to our previous simulation of
space charge region formation in a semiconductor fol-
lowing charge injection which portrayed the time de-
pendence of the fields and concentration profiles (1),
the method employed here derives only the equilibrium
properties at a given potential. The concept of time is
omitted and the intermediate results have no physical
meaning. Typical equilibrium concentration profiles of
the mobile carriers in intrinsic and n-type Ge at sev-
eral surface potentials obtained by the simulation are
shown in Fig. 2-4. Figures 2 and 3 illustrate the final
equilibrium situation under the same conditions as the
relaxation results given previously (1). A comparison
of the surface potential and space charge layer thick-
ness (or Debye length) for a highly doped semiconduc-
tor obtained by the approximate “depletion layer”
treatment, which underlies the Schottky-Mott plot
(10), and our calculation is given in Table II. Note that
the approximation becomes less applicable at low po-
tentials when the conceniration of the existing carriers
in the space charge region cannot be neglected. Other
related properties of the space charge at equilibrium,
e.g., surface conductivity and capacitance, can be cal-
culated as well using the simulation results. The space
charge region capacitance is obtained as the additive
contribution of the individual space charge elements
connected in series, each having a capacitance of Cx =
gr/ExAx where gx is the charge in element K. The
surface conductivity may be deduced by considering
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Fig. 2. Carrier concentration at equilibrium for intrinsic Ge.
=100 mV; p° = n° = 2.5 X 1013 cm—3; ¢ = 16 esu.
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Fig. 3. Carrier concentration at equilibrium for n-type Ge. V5 =
250 mV; n° = 2.5 X 1018; p° = 2.5 X 1010; &, = 16 esu.

the elements as representing resistors connected in
parallel, each with a conductivity of eAx(Unpnx +
Uppxk).

The photopotential effect—Assume the initially
biased semiconductor (now at open circuit) is illumi-
nated with a constant light intensity. We now calculate
the open-circuit, steady-state photopotential using an
iterative procedure similar to that just described. A
treatment of the time-dependent relaxation of carrier
concentration, field, and surface potential under closed-
circuit conditions is treated in the next paper in this
series (11). The process at open circuit is a coulostatic
one; charge in the semiconductor is conserved and the
effect of light is simply to rearrange the concentration
and field profiles within the semiconductor. (The same
would hold true even when a faradaic current flows, if
the number of holes crossing the interface is balanced
by electrons extracted at the semiconductor ohmic con~
tact or vice versa.) Consider an n-type semiconductor
biased at a positive potential with respect to the solu-
jon. Under illumination the photogenerated holes will
accumulate at the semiconductor surface and the elec-
trons will move to the space charge region/semicon-~
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Fig. 4. Carrier concentration at equilibrium for n-type Ge (sample
os in Fig. 2). Vs = —100 mV.

ductor bulk boundary. The dimensions of the space
charge region will change to accommodate these shifts
in carrier concentration. The total charge, and hence
the surface field, will remain constant, so that the
semiconductor space charge region can be compared
to a capacitor with a given charge which undergoes a
decrease in its width resulting in an increase in capaci-
tance and thus a decrease in the voltage drop across it
under illumination. The steady state is characterized
by the value of E;, the surface field, known from the
initial condition (Boltzmann distribution), and by the
“minority injection level,” here, the hole concentra-
tion immediately beyond the space charge region,
which is directly proportional to illumination intensity.
Analytical procedures exist for the rigorous determina-
tion of the injection level of minority carriers (here,
holes) (12). For Ge, one can assume the existence of
a diffusion layer, Ly, through which excess holes diffuse
into the bulk (where L, = \/Dpty). Ly is much wider
than the space charge region thickness (Lj) and if light
is absorbed mainly in the space charge region, the ex-
pression obtained for the flux of holes at the space
charge region/bulk boundary (x = L1) is (3)

jp(L1) = Dp(8(ap)/02) z=11 = Dp{prs — p°) /Ly [12]

Table I1. Comparison of the simulated electrical properties of a
large bandgap semiconductor electrode (n-type TiOg) and the
electrostatic approximation of the depletion layer*

Depletion layer

Simulated approximation
Q, Es, Ly, Li,**
C/ecm2 V/em cm Ve, cm Ve,***
(x 107) (x 10-¢) (x 105) v (x 105) A\
1.485 1.677 1.56 0.100 0.928 0.078
2.243 2.533 1.92 0.200 1.40 0.178
3.249 3.670 2.36 0.393 2.03 0.373
4.001 4.519 2.76 0.585 2,50 0.565
4.675 5.774 3.16 0.777 2.89 0.755
5.166 5.835 3.36 0.963 3.23 0.943
5.752 6.496 3.76 1.188 3.595 1.168
6.271 7.083 4.00 1.408 3.91 1.388
* Assumed to consist of only immobile donors; Np = 10%7

cm-3; er = 100 esu.
** 1 = Q/l- Np (depletion layer width).
*** V, = Es/2L1 (Es, surface field; Vi, surface potential).
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From Eq. [3] this same flux is given by
Ly
jplln) = =I(1 —e™3l) 4 fo R(x)dz [13]

Equations [12] and [13] allow the assignment of an
initial value to pr; (assuming at first no recombination
in the space charge region) which is modified during
the simulation due to the recombination term, using
the given values of I, ¢, and the semiconductor prop-
erties (Dpty). The equivalent expression for the elec-
trons is

nyy = n° + (pry — p°) [14]

because in this region electroneutrality essentially
holds (13). In more complicated cases, when Lj and L
are comparable in magnitude, light is absorbed outside
the space charge region as well and linearization of
the diffusion layer is unjustified. In this case a simula-
tion involving a fuller treatment of the diffusion layer
can be undertaken to find the injection level.

pr; and ny; serve as boundary conditions for the
recursion formula between the elements, this time
taken from the space charge region/semiconductor bulk
boundary to the surface which at the steady state, ac-
cording to Eq. [3] and [4] and Table I, is given by

LK) ~ ZR(K) +[0.5 UpEg+1 + (Dp/Ax) ] Pr+1

br= (Dy/Ax)— 05 UpEx+1
[15a]
L(K) —2R(K) —[0.5 UnEg+1 — (Dn/AX)]" Mg +1
ng —
" (Da/Az) — 05 UnEx+1
[15b]
where
L(R) =I,(1 — ema&~%)Az) [em—2gec™1] [16]
K
— pr T
ZR(K) = 2 ( glf_px—iAx) [cm—zsec—l]

K=1 Tp noe

[17]

The electric fields are calculated with Eq. [11], this
time proceeding from the surface to the bulk because
the surface field is known.

Thus, starting with the semiconductor in the dark
at a surface potential Vs, the condition under illumina-
tion is simulated by repetitively using Eq. [12]-[17]
until three new constant arrays (holes, electrons, and
electric field) are obtained. A numerical integration
over the fields yields a new surface potential, V¢,
where the photopotential, AV, is Vs — V.

Results

The simulated distribution of carriers with and with-
out illumination is shown in Fig. 5; Fig. 6 compares the
electric fields under these conditions. The dependence
of the photopotential on the equilibrium surface poten-
tial which exists before illumination obtained by the
simulation compared to the calculation method of
Johnson (4) is given in Fig. 7 and the relation between
the photopotential and the illumination intensity ob-
tained by these two methods is shown in Fig. 8. John-
son’s method of obtaining the photopotential usually
uses the assumption that the Boltzmann distribution
and the same analytical expression relating the poten-
tial and the field for the semiconductor holds both in
the dark and as well as in the light (3, 4). This assump-
tion was checked by the digital simulation and indeed
we find that Eq. [18] and [19] hold

ps’ =~ pry’ exp(eVs/kT) [18]
ng’ =~ n° exp (eVy'/kT) (nry ~ n°) [19]
where the primed quantities denote values under il-

lumination. This assumption applies, as has been
pointed out previously (12), because there is fast trans-
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Fig. 6. Electric fields for n-type Ge (sample as in Fig. 3): (a) in
the dark and (b) under constant illumination, /|, — 108 photons/
em2-sec. V5 (dark) — 400 mV.

port within the semiconductor phase. Thus only a very
slight imbalance between the diffusional and the mi-
grational fluxes (compared to their absolute magni-
tude) has to exist to provide the nonequilibrium flux
which corresponds to moderate illumination. Hence, in
practice, even under illumination, the carriers and
electrical field will be distributed in such a way that
winiE; ~ D;i(gni/dx), which leads to the same func-
tional relation as in the dark.
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IX. Digital Simulation of the Relaxation of Photogenerated Free Carriers
and Photocurrents

Daniel Laser and Allen J. Bard*

Department of Chemistry, The University of Texas at Austin, Austin, Texas 787 12

ABSTRACT

A digital simulation of the photoprocess at a semiconductor electrode is
described. The simulation model accounts for photogeneration, recombination,
and transport of excess free carriers within the semiconductor phase. The
origin of the photopotential in the absence of faradaic current is elucidated.
Quantitative current efficiency-potential curves for the photocurrents under a
variety of conditions are calculated for n-type TiO; and these are compared to

experimental results.

In previous papers in this series we have introduced
the use of digital simulation methods for the treatment
of semiconductor electrodes. In Ref. (1) the relaxation
of free carriers following charge injection, with and
without surface states, was described. In Ref. (2) a
method of deriving the semiconductor electrode char-
acteristics, equilibrium or steady state, at open circuit
in the dark or under constant illumination, was pre-
sented. When a semiconductor electrode at equilibrium
and in contact with solution is illuminated, a certain

* Electrochemical Society Active Member.
Key words: semiconductors, digital simulation, photoelectro-
chemistry, photogalvanic cells.

time elapses before the photoeffects are observed. Dur-
ing this time a redistribution of free carriers and
charges in the electric field in the space charge region
occurs. [When the semiconductor electrode/solution
interface is blocked to charge transfer, the new distri-
bution of free carriers in the space charge region under
illumination will cause a change in the potential of the
electrode (the photopotential effect).] Frequently, il-
lumination of the electrode is accompanied by charge
transfer to solution species and this gives rise to a
photocurrent. For example, irradiation of n-type TiO;
with light of energy larger than the bandgap energy
will result in the oxidation of water (3, 4), while
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