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ABSTRACT 

Dur ing  a photoe lec t rochemical  reac t ion  only  a por t ion  of the  l igh t  energy  
absorbed  by  the semiconductor  (CdS or  TiO2 single crys ta l )  is u t i l ized in the  
e lec t rode  reaction.  The unused  por t ion  of energy  is expended  th rough  var ious  
mechanisms as heat. Therefore  by moni tor ing t empera tu re  changes wi th in  the  
photoanode  as a funct ion of e lec t rode  potent ia l  and  l ight  intensi ty,  in fo rmat ion  
concerning the efficiency of the process can be obtained.  Expe r imen ta l  resul ts  
a re  presented  and in t e rp re t ed  using a model  for the energy  balance  wi th in  the  
system. This pe rmi t s  the  de te rmina t ion  of the  quan tum and energy  efficiencies 
s imul taneous ly  wi thout  the need to ca l ibra te  the l ight  source. 

A number  of photoe lec t rochemical  cells based on 
semiconductor  e lect rodes  for  photoelect rosynthes is  
(e.g,, the photodecomposi t ion of wa te r )  and the con- 
vers ion of solar  energy  to e lec t r ic i ty  have  ,been r e -  
por ted  ( ! -15) .  The ma jo r  factors de te rmin ing  the 
efficacy of these semiconductor  e lec t rode  ceils a re  the 
quan tum efficiency for  e lec t ron  flow (i.e., number  of 
electrons f lowing /number  of photons absorbed) ,  and  
the power  conversion efficiency (i.e., chemical  or  e lec-  
t r ica l  power  o u t p u t / i n p u t  r ad ian t  power ) .  I t  is not  
uncommon to find near  un i ty  quan tum yields  for 
e lect ron flow at a sufficiently high bias (posit ive for  
the case of n - t y p e  semiconductors)  dur ing  i r rad ia t ion  
wi th  g rea te r  than  bandgap  energy  l ight  for m a n y  
semiconductors.  However ,  even when  high quan tum 
efficiencies have been  obtained,  the  power  efficiencies 
were  much lower  (10-15). Fo r  example ,  for  photo-  
oxida t ion  at  a CdS single c rys ta l  anode, Wrighton  
et al. (15) r epor ted  tha t  w i th  an  Se 2-  solut ion the 
m a x i m u m  monochromat ic  power  efficiency obta ined  
was 3.4% wi th  a m a x i m u m  quan tum efficiency of 
49%. Such findings demons t ra te  tha t  the ma jo r  pa r t  
of the l ight  energy  absorbed  by  the semiconductor  is 
not  used for  the  photo-ass i s ted  oxida t ion  bu t  r a the r  
is conver ted  to heat  energy p robab ly  via radia t ionless  
t rans i t ions  wi th in  the conduction band  of the semi-  
conductor  (i.e., when the photon energy  is in excess 
of the  bandgap  energy)  or  e lec t ron-hole  recombina t ion  
processes. Consequently,  t he rmal  measurements  of 
the  semiconductor  e lec t rode  dur ing  etectroIysis  can 
aid  in the  de te rmina t ion  of the efficiencies and perhaps  
in  the e lucidat ion  of the mechanism of the  cell  p roc-  
esses. 

We recent ly  descr ibed  a new spectroscopic method 
cal led Pho to the rmal  Spect roscopy (PTS)  (16). This 
technique involves  p lac ing a thermis tor  on or  in close 
p rox imi ty  to a sample  and  measur ing  t empera tu re  
changes (i.e., the rmis tor  res is tance changes)  dur ing 
sample  i r r ad ia t ion  wi th  monochromat ic  light.  This 
technique can be eas i ly  adap ted  to cases when  the 
sample  is a semiconductor  e lec t rode  (17). Cahen (18) 
has also shown tha t  s imi la r  measurements  wi th  photo-  
acoustic spectroscopy can be used to de te rmine  the 
efficiency of so l id-s ta te  photovol ta ic  devices. We re -  
por t  in this pape r  measurements  of the  conversion of 
l ight  energy  to chemical  a n d / o r  e lec t r ica l  energy at  
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CdS and Ti02 photoanodes by  d i rec t  de te rmina t ion  of 
the t e m p e r a t u r e  changes of semiconductor  electrodes.  
The resul ts  were  in t e rp re t ed  using a theore t ica l  equa-  
tion for the energy  ba lance  wi th in  the system. In this 
manner  the  quan tum efficiency and power  efficiency 
could be de te rmined  wi thout  ca l ibra t ion  of the  i r -  
rad ia t ion  source. 

Experimental 
Procedure.--The basic pho to the rmal  expe r imen t  was 

essent ia l ly  car r ied  out  as prev ious ly  descr ibed wi th  
s l ight  modifications (16, 17). In  these exper iments  the  
photoanodes  s tudied  were  CdS and TiOz single c rys-  
tals. The resul ts  repor ted  here  are  for monochromat ic  
rad ia t ion  at  wavelengths  corresponding to energies  
grea te r  than  the bandgap  energy  (for example ,  for 
CdS, 490 nm) .  The pho to the rmal  responses were  ob-  
ta ined  for the photoanodes dur ing  both  anodic po la r i -  
zat ion and under  open-c i rcu i t  condit ions in the  e lec-  
t ro lyte  solutions. The corresponding cur ren t  and t em-  
pe ra tu re  changes were  then p lo t ted  as a funct ion of 
potential .  Exper imen t s  were  car r ied  out  in  two l abora -  
tories wi th  two different  exper imen ta l  setups ( re fe r red  
to as A and B) .  

InstrumentaL--Block diagrams of  these are  shown 
in Fig. 1 and 2. The appara tus  (A) in Fig. 1 employed  
a 500W high pressure  me rc u ry  l amp (Ushio Electr ic  
Company Limi ted)  housed in an  Ushio Model  UI -  
501C housing. A lens was used to focus the  l ight  beam 
and in ter ference  filters (Koshin  Kogaku  Company 
Limi ted)  were  employed  to select  the wave leng th  of 
exci t ing light. A shut te r  wi th  two timers,  made  by  
special  o rder  for this expe r imen t  ( I sh ikawa Seisakusho 
Company Limi ted)  was used to fix prec ise ly  the  i r -  
rad ia t ion  period.  Sys tem B is shown in Fig. 2. The 
l ight  source was a 2500W shor t  arc  xenon  l amp  housed 
in an Oriel  Model  LH-152N housing. The ou tput  of the  
l amp was first chopped mechan ica l ly  (on 20 sec; off 
40 sec) and then focused using f/1 quar tz  optics on the 
entrance slit  of a J a r r e l l - A s h  Monochromator  (Model  
82-410). The resul t ing monochromat ic  l ight  (10 nm 
bandpass)  was then f i l tered of second o rde r  and 
finally focused on the photoanode wi th in  the e lec t ro-  
chemical  cell. 

Al l  cells were  equipped  wi th  p l a t inum counter -  
e lectrodes and sa tu ra t ed  calomel  re ference  electrodes 
(SCE).  I r r ad ia t ion  was accomplished th rough  opt ica l ly  
flat windows both in  the  wa te r  baths  and in the  cells. 
The working  electrodes were  p laced a sufficient dis-  
tance f rom the cell  window (,-,2 cm) to avoid  any  

840 

Downloaded 13 Feb 2009 to 146.6.143.190. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp



VoL 127, No. 4 841 PHOTOTHER1VIAL S P E C T R O S C O P Y  

9 1 

3 

12 

0 

11 8 

\ 
1 

Fig. I .  Measurement assembly, A 
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RECORDER Ii; D~C. BRIDGE 

12; POLYRECORDER 

heating effects due to window heat ing.  A n i t rogen 
bubb le r  was employed  for  deoxygena t ing  the solu-  
tions. The  cel l  t e m p e r a t u r e  was main ta ined  by  a wa te r  
ba th  which  in Sys tem A was thermosta t ted .  

The  work ing  e lect rodes  were  cadmium sulfide single 
crysta ls  [(001) surface]  (Te ikoku  Tsushin Company 
Limi ted)  which had dimensions 10 • 1O • 1 m m  and 
a ca r r i e r  dens i ty  of 4.8 X 1016 cm -~, and  t i t an ium di- 
oxide single crysta ls  [ (001) surface]  (Nakazumi  Crys-  
ta l  Company  Limi ted)  each having  dimensions about  
10 • 10 • 1.5 m m  and t rea ted  by  reduct ion  to in-  
crease ca r r i e r  density.  The ohmic contacts  were  made  
by  e lec t ropla t ing  ind ium on one side of each crys ta l  
and then  a t taching a copper  wire  to the  contact  wi th  
conduct ing s i lver  epoxy  [Seisin Shoj i  Company 
Limited,  No. 4992 (A) ,  or  Al l ied  Products  Corpora -  
tion, New Haven,  Connect icut  (B)] .  The back  and 
sides of the  c rys ta l  were  insu la ted  and moun ted  on a 
fiat  piece of glass a t tached  to a glass rod  wi th  epoxy  
resin [Semedian  Company  Limi ted  (A) ,  or  Devcon 
Incorpora ted ,  Danvers ,  Massachuset ts  (B)] .  The semi-  
conductor  surfaces were  pol ished wi th  0.3 ~m pol ishing 
a lumina  p r io r  to use. Then, in the  case of CdS they  
were  etched jus t  before  use in concent ra ted  hyd ro -  
chloric acid for  10 sec. 

The  s t ruc ture  of the  semiconductor  e lect rode (wi th  
a the rmis to r  in p lace)  is shown in Fig. 3. Matched 
pairs  of thermis tors  were  used: (A) Sh ibau ra  Elec-  
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Fig. 2. Measurement assembly, B 

t ronics Model BSB4-41A; nomina l  res is tance 4 kf~ 
sensi t ivi ty,  0.052~ or  (B) Victory  Engineer ing  
Incorporated,  Model  32A223; nomina l  resistance,  2 
k~,  sensit ivi ty,  0.013 r Both had t ime constants  
of 0.4 sec when  immersed  in  uns t i r r ed  water .  The 
thermis tors  were  used in a dif ferent ia l  a r r angemen t  
wi th  one the rmis to r  held  agains t  the  front  su r -  
face of the  e lec t rode  and the o ther  posi t ioned behind  
the e lect rode whi le  not  touching it. The  cell  was care -  
fu l ly  posi t ioned so that  the monochromat ic  l ight  beam 
s t ruck  the whole  exposed surface of the  e lec t rode  but  
ne i ther  of the thermistors .  Thus a change in t e m p e r a -  
ture of the e lect rode caused a res is t ive change in the 
thermis tor  and produced  a vol tage  imbalance  in (A) 
the d-c  or  (B) the  a -c  bridges.  This smal l  vol tage  
was amplif ied and then  d i sp layed  on s t r ip  char t  r e -  

i; SEMICONDUCTOR CRYSTAL 

2; Cu LEAD WIRE 

3; THERMISTOR 

4; SILICONE RUBBER 

5; EPQXY RESIN 

6; REFERENCE THERMISTOR 

1 

Fig. 3. Structure of semiconductor electrode. Light irradiates only 
the semiconductor surface and not the thermistors. The contact to 
the electrode and the thermistor is insulated from the solution by a 
thin layer of epoxy cement. 
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Fig. 4. Photothermal spectrum (PTS) of CdS single crystal. The 
solid line shows the absorption spectrum of the same crystal. 

corders  (A) Tao Electronics Model  ERP-2T or  (B) 
Tosely Model 7100B. 

The cu r ren t -po ten t i a l  and cu r r en t - t ime  curves  were  
measured  under  potent iosta t ic  condit ions using po ten-  
t iostats  and potent ia l  p rogrammers :  (A) Nikko 
Keisoky  Company Limi ted  (Models NRGS-301 and 
NPS-2)  and (B) Pr ince ton  Appl ied  Research (Models 
173 and 175). Cyclic vo l t ammograms  and cu r ren t -  
t ime curves were  d isp layed on an X-Y recorder  [ ( A )  
Yokokawa Type 3078 or  (B) Houston Ins t ruments  
Model 2000]. 

The monochromat ic  lamp in tens i ty  was measured  
precisely  using ei ther  (A) a chemical  ac t inometr ic  
method (potass ium ferrous oxala te)  or  (B) an EG&G 
rad iome te r /pho tome te r  Model 550-1. Al l  chemicals  
were  of reagent  grade  and were used wi thout  fur ther  
purification. 

Results 
Previous  studies wi th  pho to thermal  spectroscopy 

(PTS)  have  shown, tha t  the t empe ra tu r e  changes 
which occur upon l ight  absorpt ion  corre la te  wel l  wi th  
the  results  of opt ical  absorpt ion spectroscopy. This is 
demons t ra ted  in the  PTS of single c rys ta l  CdS (Fig. 
4) where  i r r ad ia t ion  wi th  l ight  of energy grea te r  than  
the bandgap  produces  e lec t ron-hole  pairs  which, if 

the semiconductor  is not a fluorescent, phosphorescent ,  
or  photochemica l ly  act ive mater ia l ,  recombine th rough  
radia t ionless  t ransi t ions  to produce  heat. Al though the 
spec t rum shown in this figure was observed for the  
sample  in air, s imi lar  PTS spect ra  of smal le r  mag-  
n i tude  were  measured  in water .  The magni tude  of 
the  observed  signal  depends on the the rmal  conduc-  
t iv i ty  and the  hea t  capaci ty  of the sample  and its en-  
v i ronment .  

When  an n - t y p e  semiconductor  is used as a photo-  
anode of a photoelec t rochemical  cell, tha t  por t ion of 
t he  impinging  rad ian t  energy  which  is not  conver ted  
to e lect r ica l  energy or s tored as chemical  energy is 
diss ipated as heat. One source of this hea t  is the  differ-  
ence be tween  the photon energy,  E ( = h v ) ,  and the 
bandgap  energy,  Eg; this  represents  radia t ionless  
processes wi th in  the conduction band  af te r  l ight  ab-  
sorption. Other  factors leading to hea t  diss ipat ion are  
the  difference be tween  the valence band energy  level  
and the solution redox level,  I E v B -  Eredoxl and the 
difference (usual ly  small )  be tween  the Fe rmi  level  and  
conduct ion band  level,  JEF, flatband - -  ECBI. Note tha t  
even when the quan tum efficiency is unity,  dissipat ion 
caused by  these factors wi l l  cause heat ing at  the elec-  
~ o d e  surface. 

CdS/Fe(CN)6 s- ,  Fe(CN)64- system.--The photo-  
the rmal  exper imen t  was appl ied  to the  pho to -ox ida -  
t ion of K4Fe(CN)6 at  the CdS photoanode.  The solu- 
t ion used was 0.1M K4Fe(CN)6, 0.001M K3Fe(CN)6,  
and  0.2M Na2SO4 as the  electrolyte .  Cur ren t -po ten t i a l  
curves using the CdS elect rode showed typical  be -  
hav ior  of an n - t y p e  semiconductor  e lect rode (VFB = 
--1.0V VS. SCE).  The quan tum efficiency of the  CdS 
crys ta l  was calcula ted to be  nea r ly  100%, when the 
crys ta l  was i r r ad ia t ed  wi th  grea te r  than  bandgap  
l ight  (490 nm) (which was not absorbed by  the elec-  
t ro ly te  solution) and the e lect rode main ta ined  at  
2.0V vs. SCE. When  the crys ta l  was used as a photo-  
anode in the solution, there  was no change in photo-  
cur rent  wi th  t ime and no sulfur  was detected on the 
surface af ter  pro longed use. Therefore,  we conclude 
that  the K4Fe (CN)6 was the species oxidized and that  
the  photoanode was s table  in this solution. 

The  changes in t empe ra tu r e  vs. t ime were  measured  
at  each appl ied  potent ia l  while  the pho tocur ren t  was 
recorded s imultaneously.  In  the  dark,  no change in 
t empera tu re  was observed ei ther  a t  open circuit  or  
a t  potent ia ls  posi t ive of Vym where  the  observed cur-  
rents  were  less than  10 -9  A/cm2. F igure  5 i l lus t ra tes  
typical  changes in t empera tu re  wi th  t ime upon i r -  
rad ia t ion  w i t h  grea ter  than bandgap  l ight  (490 nm) 
at  open-c i rcu i t  condit ion and with  var ious  appl ied  
potentials .  The t e m p e r a t u r e  increased almost  l inea r ly  
when the l ight  pulse  was ini t iated.  When the l ight  
pulse was t e rmina ted  (af ter  20 sec i r rad ia t ion)  the  
t empera tu re  decreased quickly.  We have a l r eady  dis-  

P H O T O C U R R E N T  

Fig. 5. The change in tem- 
perature vs. time for the CdS OPEN 
anode in 0.1M K4Fe(CN)6, 
0.001M K3Fe(CN)6, and 0'2M T E M P E R A T U R E  
Na2SO4. Upper curves show the o f f  anodic photocurrent vs. time. t" 
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cussed this behavior  in the  simplif ied theory  of PTS 
(16). 

In  Fig. 6 the  t empe ra tu r e  change  vs. potent ia l  and 
the  corresponding pho tocur ren t -po ten t i a l  curves are  
expe r imen ta l l y  plot ted.  These resul ts  a re  r ep resen ta -  
t ive  of those ob ta ined  wi th  both  systems. Compared  
wi th  the  hea t ing  observed  at  open circuit ,  the  t em-  
pe ra tu re  increase was smal le r  a t  --0.SV and l a rge r  
a t  2.OV and 4.9V, respect ively .  

TiO2/HeS04 s y s t e m . - - A s  the  TiO2 photoanode,  th ree  
different  TiO2 single crysta ls  were  used. Each was re -  
duc t ive ly  t rea ted  under  vacuum at  var ious  t e m p e r a -  
tures  and for different  lengths  of t ime:  (i)  3 h r  at  
650~ (ii) 3 h r  a t  550~ (i i i)  4 h r  a t  800~ The ex -  
pe r iments  were  conducted using each TiO2 single c rys-  
ta l  e lec t rode  in a 1M sulfur ic  acid solution. Since the 
bandgap  of TiO~ is 3.0 eV, the  wave leng th  of the  
l ight  chosen for  i r r ad ia t ion  was 370 nm. The i r r a d i a -  
t ion per iod  was fixed a t  20 sec in each case. The re -  
sults of a typica l  expe r imen t  using the first (and most 
efficient) TiO2 e lec t rode  a re  shown in Fig. 7. The  
th ree  different  crys ta ls  showed qui te  different  slopes 
for  the  t empe ra tu r e  increase  vs. potent ia l  curves. The 
semiconductor  e lec t rode  which  produced the larges t  
pho tocur ren t  showed the s teepest  slope. 

Theoretical Treatment  
The expe r imen ta l  resul ts  can be in te rp re ted  b y  

consider ing the energy  balance  wi th in  the  photoelec-  
t rochemica l  cell. The first aspect  of this formula t ion  
wi l l  be to examine  a s imple e lec t rochemical  reac t ion  
f rom a the rmodynamic  point  of v iew to de te rmine  
wha t  in format ion  concerning the sys tem can be ob-  
ta ined  via  t he rma l  measurements .  This model  wi l l  
then  be modified to fit the  constraints  of the  photo-  
e lec t rochemical  sys tem which  is s l ight ly  more  com- 
p lex  ye t  ve ry  similar .  The resu l t ing  the rmal  r e la t ion-  
ships wi l l  then  be used to inves t iga te  the  ouan t i t a t ive  
aspects of var ious  photoe lec t rochemical  devices. 

Ca lo r ime t ry  has been used by  previous  inves t iga tors  
to measure  the  en tha lpy  change (AHc) which occurs 
dur ing  an e lect rochemical  react ion (19). Such a sys-  
can be descr ibed by  the equat ion 

AHc --  Q --  We [I] 

where  We is the  e lect r ica l  work  into (or out  of) the  
sys tem and Q is the  hea t  evolved in the  system from 
revers ib le  and i r revers ib le  work.  The e lec t r ica l  work  
can be expressed  in te rms of current ,  voltage,  and 
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Fig. 6. Temperature change vs. potential (O)  and photocurrent 
vs. potential (e )  of the CdS single crystal electrode. 
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Fig 7. Temperature change vs. potential (O)  and photocurrent 
vs. potential (e )  of the TiO2 single crystal electrode. TiO2 single 
crystal was treated in the vacuum for 3 hr at 650~ 

t ime ('Fit) and the hea t  evolved  in te rms of an en-  
t ropy  change for the  whole  cell react ion (TAS), ac-  
t iva t ion  energy,  in te rms of overpotent ia l ,  n, (nit) 
and the contr ibut ion  f rom elec t rode  and solut ion re -  
sistance, R, (i2Rt). The tota l  express ion for  the  en-  
t ha lpy  is thus 

AHc = TAS + nit + i~Rt -- Vi t  [2] 

This equat ion is d i rec t ly  appl icable  to the photoelec-  
t rochemical  s i tuat ion by  considering two addi t ional  
energy terms and by  reeva lua t ing  the e lec t rochemical  
cell in te rms of energy in and out. 

For  the case of a photoelec t rochemical  device one 
must  now consider  tha t  the  e lec t rode  is i l lumina ted  
wi th  a monochromat ic  l ight  pulse  having an energy  
E (eV/pho ton) ,  w i t h  an average  absorbed  in tens i ty  
I (photon/sec)  for a t ime t (sec).  Therefore  the  
total  energy put  into the  sys tem per  l ight  pulse  is 
EIt  (eV).  This energy  can then e i ther  be used by  
the semiconductor  to promote  the  e lect rode react ion 
wi th  product ion of e lect r ica l  work  (V/t) or  evolved  
as hea t  in the  semiconductor  (Qsc) via  recombina t ion  
and o ther  radia t ionless  processes. The resul t ing  equa-  
t ion for  the  overa l l  photoelec t rochemical  react ion is 

~H~ = QT - WT [3] 
where  

QT = TAS + ~it + i2Rt + Qsc [4] 

WT "- E I t +  Vi i  [5] 
the re fore  

AHc : TAS + ~it + i2RT + Qsc - E I t  --  Vit  [6] 

Upon r e a r r a nge me n t  the  re la t ionship  be tween  the  
measured  quant i ty ,  QT, and the  res t  of the  var iab les  
we obta in  

QT : Qsr + TAS + ~it + i2RT = E I t +  V i t +  ~Hc [7] 

This final equat ion can now be re la ted  to the ac tua l  
photoelec t rochemical  exper iment .  Al though de t e rmi -  
nat ion of QT by ca lor imet r ic  means  is possible,  in the 
pho to thermal  exper iments  re la t ive  t empera tu re  
changes are  measured  and these are  used to ex t rac t  
the des i red  informat ion.  This is done by  compar ing  QT 
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measured  dur ing  cur ren t  flow in the photoelec t ro-  
chemical  expe r imen t  to that  measured  when  the cell  is 
a t  open circuit.  In  the open circuit  case no net  e lec-  
t rochemical  react ion occurs and al l  the absorbed  l ight 
energy  is conver ted  to heat, QOT, w i t h i n  the  semicon-  
ductor,  so tha t  

~ ~  --- Qsc -- E/~; [8] 

This condition shows that the heat absorbed by the 
system is directly proportional to the light energy put 
into this system. Therefore 

QT Qsc + TaS + ~lit + i2RT 
,=  [9] 

Q~ EIt 

The corresponding re la t ive  change in t empe ra tu r e  a t  
the  semiconductor  surface can be rep resen ted  by  

AT Q s c  4- TaS + nit + i2RT -- kAT 
a / ~ o =  a T r e / =  [10] 

EIt - -  kATo 

where  kAT is the hea t  lost  by  conduction f rom the  
electrode.  Severa l  assumptions m u s t  be made at  this 
point  concerning these t empe ra tu r e  measurements .  The 
first and  most impor tan t  is that  t empera tu re  changes 
occurr ing on the e lec t rode  surface both in the semi-  
conductor  (Qsc) and in solut ion (T~S + nit + i2Rt) 
are  equa l ly  detectable .  This is a good assumpt ion  be-  
cause in general ,  the  the rmal  conduct iv i ty  of the elec-  
t rode  is a t  least  an order  of magni tude  grea te r  than  
tha t  of the solvent.  Other  assumptions  which  must  be  
made  to s impl i fy  the t r ea tmen t  a re  tha t  the terms 
khT and i2RT are  ve ry  smal l  and can therefore  be 
neglected.  This is acceptable  because the t empe ra tu r e  
changes measured  are  typ ica l ly  on the o rde r  of mi l l i -  
degrees and the total  resis tance is usua l ly  ve ry  low. 
Note tha t  if the  khT terms are  not negligible,  correc ted  
va lues  of aT  can be obta ined by  ex t rapo la t ion  of the 
ini t ia l  l inear  por t ion  of the t e m p e r a t u r e  rise wi th  t ime 
to the  va lue  ATcorr at  the t ime when  the t empera tu re  
begins to fall. In  the ac t iva t ion  te rm the overpotent ia l ,  
0, is ac tua l ly  V --  VFB (where  VFB is the f latband po-  
tent ia l  of the  semiconductor)  so tha t  Eq. [10] can be 
wr i t t en  as 

aT Qsc + ThS i(V - -  VFB ) 
-~ [11] 

aTo Elt E1 

,~T 
~TQo. E 

/ 

/ 
/ ............... 

/ / 
// 
f ................. 

( V-V~b ) 

I t -  Q$c 
I t  

T~S 
I t  

QSC +T~S 
I t  

Ip/ 
( V--Vfb ) 

Fig. 8. (Top) Theoretical behavior of the photothermal signal vs. 
potential according to Eq. [12]. (Bottom) Photocurrent vs. poten- 
tial. 

Discussion 
To i l lus t ra te  the use of the  Eq. [12] in ob ta in ing  the 

quan tum and energy efficiencies, the  resul ts  shown in 
Fig. 6 and 7 are  rep lo t ted  in Fig. 9 and 10, in which  

AT 
the ord ina te  is E - -  and  the abscissa is (V - -  VF- ) .  

a T ~  

The lef t  s ide  of the equat ion can be given specific en-  
e rgy  units to faci l i ta te  the ma themat i ca l  t r ea tmen t  to 
f inally yie ld  

AT Qsc + TaS 
E = + ~l~(V -- VFB) [12] 

AT ~ I t  

where  ~q _-- i / I =  quan tum efficiency of the p h o t o -  
oxidat ion  and (Qsc + T~S) / l t  is the total  hea t  
change (usua l ly  evolved)  in the system (at  the photo-  
anode) .  Therefore  under  constant  i l lumina t ion  condi-  

AT 
tions (i.e., EIt held  constant)  a plot  of E - -  aga ins t  

aT o 
(V -- VFB) yie lds  the  quan tum efficiency, ~q, f rom the 
slope of the s t ra igh t  l ine and the loss term,  (Qsc 4- 

aT  
ThS)/I t ,  is obta ined  f rom the in te rcep t  of the  E 

aT o 
axis at  V ---- VFB as shown in Fig. 8. We define the  
single electrode,  monochromat ic  energy  efficiency of 
the sys tem as 

E I t  - -  Qs~ 
~e = X 100 [13] 

Eli 

The efficiency as defined above can then be obtained by 
making  the appropr ia t e  correct ion for the en t ropy  
chang e associated wi th  the e lect rode reaction.  The 
detai ls  associated wi th  this  correc t ion  are  descr ibed in  
the fol lowing discussion. 

CdS (490nm) 

AT E 
ATo.o. 

(~V) 

2 

~ - - - - ~  ~ OPEN ..... 

/ 

' ' ' '4 0 0 1 2 3 

V- VfB 

Fig. 9. Normalized phototbermal signal vs. potential from the 
flatband potential of the CdS electrode. 
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T• (340~m) 

1 

6 

2 

4 3 

~T E . . . .  - 
ATo.c. : : : : : t  <> 

(eV) 

2 

o o 'I 3' ; - 

V - Vfb 

Fig. 10. Normalized photothermal signal vs. potential from the 
flatband potential of the TiO2 electrodes, TiO~ single crystals were 
treated in the vacuum atmosphere, No. 1: for 3 hr at 650~ No. 2: 
for 3 hr at 550~ No, 3: for 4 hr at 800~ 

For  the  C d S / F e ( C N ) 8 3 - ,  F e ( C N ) 6 4 -  sys tem the  
t e m p e r a t u r e  increase  of 1.7 • 10-2~ which  was m e a -  
sured  at  open ci rcui t  corresponds to E = 2.5 eV be-  
cause 490 nm monochromat ic  l ight  was used to exci te  
the  CdS e lec t rode  (Fig. 9). In  the  l imi t ing pho tocur ren t  
region,  we find a s t ra ight  l ine wi th  a slope equal  to 1.0. 
This means  tha t  the quan tum efficiency of the pho tore -  
act ion on the CdS e lec t rode  is unity,  which  is s imi lar  
to the  va lue  found f rom the pho tocur ren t  and  the cal i -  
b ra t ed  l ight  in tens i ty  (number  of photons s t r ik ing  the 
e lec t rode) .  F r o m  the in te rcept  of the Y-axis  obta ined  
by  ex t rapo la t ing  the l inear  por t ion  of the  curve to the  
f la tband potent ia l ,  we  can calcula te  the  energy  effi- 
c iency of the  photosemiconductor  reaction,  if ent ropic  
hea t  a t t r i bu tab le  to the  e lec t rode  react ion (T~S or 
the  Pe l t i e r  heat )  can be obtained.  The behavior  
k n o w n  as the  e lec t rochemical  Pe l t i e r  effect (i.e., the  
en t ropy  change at  the  e lec t rode  surface)  has been in-  
ves t iga ted  by  Tamamush i  (20). This effect can be a t -  
t r ibu ted  to th ree  contr ibut ions:  the en t ropy  of the 
e lect rode react ion,  the  en t ropy  a t t r i bu t ed  to the  mig ra -  
t ion of ions and electrons,  and the en t ropy  caused by  
e lec t rochemical  polarizat ion.  Tamamush i  inves t iga ted  
this effect dur ing  a s tudy  of the  e lec t rochemis t ry  of 
the  K4Fe (CN) J K a F e  (CN) 6 redox  couple at  a gold elec-  
trode. Cooling was observed  dur ing  the oxida t ion  step 
and hea t ing  occurred dur ing  reduct ion  at  potent ia ls  
nea r  the  equ i l ib r ium potent ia l ;  this can be a t t r ibu ted  
p r i m a r i l y  to an en t ropy  effect of the e lec t rode  reaction.  
This same effect must  also be inc luded in  the photo-  
chemical  reac t ion  on the CdS surface. 

To obta in  the  appropr i a t e  correct ions in our t he rma l  
measurements ,  the e lec t rochemis t ry  of the  K4Fe (CN)6/  
K3Fe (CN)6 couple at  a p l a t inum elec t rode  was studied.  
The en t ropy  effect was s imi lar  to that  found by  Tama-  
mushi  in which cooling occurred unde r  the  anodic 
polar iza t ion  and an  equal  amount  of heat ing occurred  
under  the cathodic polar izat ion.  I t  is only  necessary to 
make  this fu r the r  correct ion for the  e lec t rochemical  
reac t ion  en t ropy  near  the equ i l ib r ium potent ial ,  be-  
cause the polar iza t ion  effect was a l r e ady  inc luded in 
the  ~]q(V - -  V F B )  t e rm in Eq. [8] and the migra t ion  
effect would  be negl ig ible  (the solut ion and the CdS 
electrode,  res i s t iv i ty  = 1-2 ~l/cm, were  both  h igh ly  
conduct ive) .  

In  this same solution, hea t ing  was also observed 
dur ing  the da rk  cathodic reac t ion  on the  CdS e lec t rode  
under  n i t rogen  bubbl ing.  The amount  of hea t ing  was 
3.4 • 10-z~ (which  corresponds to 0.5 eV in this 
case) ,  when  a cathodic c u r r e n t  of 850 ~A (which was 
the same as the  s a tu ra t ed  photoanodic  cur ren t )  was 
passed for  20 sec. Therefore ,  assuming tha t  the photo~ 
anodic  reac t ion  en t ropy  is equal  bu t  opposi te  to this 
en t ropy  ( f rom the resul ts  on the p l a t inum e lec t rode) ,  
the  endothermic  en t ropy  change on the CdS photo-  
anode for  a 20 sec l ight  pulse  was de t e rmine d  to be 
0.5 eV. 

The value  of the in te rcept  in Fig. 9, (Qsr + T~S) / I t ,  
was 1.0 eV. So, t ak ing  TAS/I t  = 0.5 eV (endothermic) ,  
we find Qsc/It = 1.5 eV. In  this case (490 nm i r r a d i a -  
t ion) ,  the monochromat ic  energy  convers ion efficiency 
is I00 • Elt  -- QsJEl t  -- 10O • 1.0/2.5 --  40%. This 
resul t  is also consis tent  w i th  the  fact  tha t  only  a f rac -  
t ion of the energy  is being ut i l ized for the oxida t ion  
of Fe (CN)64-  to Fe (CN )63 - ;  i.e., for  the  whole  cell  

CdS/0.1M ILtFe (CN) 8; 0.001M I ~ F e  (CN) 6/Pt  

the  m a x i m u m  cell  vol tage  ob ta inab le  is ]VFB - -  VredoxI 
1.0V, whi le  the energy  of the  incoming rad ia t ion  is 

2.5 eV (490 nm) .  
As shown in Fig. 10 for  the  TiO2/H2SO4 system, 

th ree  different  l ines were  obtained,  wi th  slopes of 0.7, 
0.3, and 0.1. These correspond to the  quan tum effi- 
ciencies of the different  TiO2 photoanodes.  Again,  as 
in the case of CdS, calculat ions using the in tercepts  
of these l ines can y ie ld  the  var ious  energy  efficiencies. 
As is obvious f rom the  resul ts  in Fig. 10, the  photo-  
anode which  shows the smal les t  qua n tum efficiency 
(i.e., smal le r  slope) has the la rges t  in te rcept  (i.e., the 
lowest  energy  conversion efficiency). To g e t  the ac tua l  
energy conversion efficiency, we must  aga in  correct  
for the  Pe l t i e r  en t ropy  effect, which  is p ropor t iona l  to 
the magni tude  of the photocurrent .  The oxidat ion  on 
the TiO2 photoanode was oxygen  evolut ion based on 
wa te r  decomposit ion.  Con t r a ry  to the  oxidat ion  of 
Fe  (CN) 64- as ment ioned  above, oxygen  evolu t ion  on 
the e lect rode showed exothermic  heat ing behavior ,  
main ly  due to the en t ropy  of the e lec t rochemical  reac-  
tion. To make  the  app rop r i a t e  correct ions for  this 
en t ropy  effect the  redvct ion  o f  K~Fe(CN)~ was ex -  
amine-d at  TiO2 and p l a t i num and the resul ts  compared  
to those observed dur ing the  oxida t ion  of w a t e r  at 
pla t inum. In this manner  the  magni tude  of the en t ropy  
effect occurr ing  dur ing  the pho to -ox ida t ion  at  TiO2 
could be est imated.  When the anodic pho tocur ren t  was 
1.8 m A  (No. 1 in Fig. 10), i t  was found tha t  the  en-  
t ropy  effect corresponded to 0.5 eV. Therefore  for  
e lec t rode  i,  since E = 3.5 eV (340 nm) ,  Q~c + TAS/I t  
= 2.7 eV (f rom the in te rcep t ) ,  and T~S/ I t  = --0.5 eV 
(the en t ropy  effect).  Therefore,  Qsc/It = 2.2 eV. The 
energy  conversion efficiency can be de te rmined  as 

EIt - -  Qsc 
i 0 0  • 

EIt 
- -  1 0 0 •  1 . 3 / 3 . 5  - -  3 7 %  

The fract ion of the photon  ene rgy  tha t  is not  used 
i n  the oxidat ion  of the redox species is d iss ipated  as 
hea t  via two possible mechanisms as shown in Fig. 11. 
The first mechanism, (a) ,  represents  the fill ing of a 
valence band  hole by  the reduced  species in solut ion 
to produce  a v ib ra t iona l ly  exci ted  species. This energy  
is qu ick ly  diss ipated in the solut ion as heat. The sec- 
ond mechanism,  (b) ,  represents  the  isoenerget ic  e lec-  
t ron t ransfe r  f rom the reduced  species in solut ion to 
a surface s tate  which  then  recombines  wi th  a hole in 
the valence  band of the semiconductor ,  wi th  the  hea t  
d iss ipated i n  the semiconductor  itself. However ,  at  
this  t ime we can not  dis t inguish the difference be tween  
hea t  p roduced  in solut ion or  heat  on the  e lect rode 
itself. Therefore  ne i the r  mechanism can be verif ied 
using only  the t e m p e r a t u r e  measurement .  

Downloaded 13 Feb 2009 to 146.6.143.190. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp



846 J. Electrochem. Soc.: E L E C T R O C H E M I C A L  S C I E N C E  A N D  T E C H N O L O G Y  April  1980 

(b) 

(b) 

VB 

i V= Ef~ Er~do x 
] 

Eredox 

(a) 

~(a) .......... 

Pt 

n-type Semiconductor 

Fig. 11. Maximum open-circuit photopotential and heat dissipa- 
tion mechanism. 

Conclusion 
By in situ t empe ra tu r e  measurements  of the semi-  

conductor  electrode,  the quan tum and energy  efficiency 
of the  e lect rode react ion could be obtained.  The ad -  
vantage  of this type  of measuremen t  'ties in the  fact  
tha t  i t  is a re la t ive  measu remen t  and therefore  does 
not  depend upon knowing the l ight  intensi ty.  This 
e l iminates  the  need for  ca l ibra t ion  of the exci ta t ion  
source and establ ishes a method  by  which  resul ts  in 
different  labora tor ies  can be compared  more  easily.  
A d isadvantage  of the technique is tha t  the precis ion 
of the  measurements  ( ~  •  l imits  i ts use to the 
more  efficient systems. 

In  consider ing the  efficiencies ob ta ined  in  this  m a n -  
ne r  one should  note tha t  the  resul ts  p resen ted  refer  
to the  efficiency of the  e lec t rode  react ion and not to 
the  ent i re  photoelec t rochemical  cell. In  this work  no 
a t ten t ion  was given to the reac t ion  occurr ing at  the 
countere lec t rode  or to whe the r  the  cell was photo-  
vol taic  or photosynthet ic .  In  o rde r  to t r ea t  the  ent i re  
sys tem the rmal  measurements  dur ing  the cell reac-  
tion would be necessary.  Such measurements  could be 
carr ied  out  in a manne r  s imi lar  to tha t  descr ibed above 
or  by  placing the ent i re  photoelec t rochemical  cell  in  
a photoca lor imeter  and  measur ing  the overa l l  t he rma l  
change of the cell resu l t ing  f rom i l luminat ion.  By us-  
ing the fo rmer  method  both the e lec t rode  and cell  
efficiencies could be  de te rmined  whi le  ca lor imetr ic  
techniques would  only  y ie ld  the cell  efficienCy. 
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