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ABSTRACT

Thin layer electrochemical cells in which the electrodes are two hemispheres. a hemisphere and a
plane, two cones. a cone and a plane, and crossed cylinders, are considered. An approximate procedure
was used to derive analytical expressions for the steady-state. diffusion-limited current at these cells. The
procedure rests on the assumption that the diffusive flux of electroactive species in the cell is largest in
the region of minimum electrode separation and is approximately one-dimensional. This assumption was
tested by calculating from the continuity equation and Fick’s first law, the current attributable to the full
three-dimensional flux of a redox couple 10 the electrodes of a simple model cell formed from two axially
aligned hemispheres. The results show that the one-dimensional-flux approximation is a good one at
short separation distances.

INTRODUCTION

This paper discusses the current-distances behavior of electrochemical thin layer
cells with electrodes of spherical and conical shape. Twin-electrode thin layer cells
conventionally employ planar parallel electrodes spaced about 50-100 um apart [1).
When a redox couple, Ox/Red, is introduced into the interelectrode gap and the
potential between the electrodes adjusted so that diffusion-limited redox processes
occur, a steady-state current, i, that varies with 1// (where / is the interelectrode
separation) flows. We have recently become interested in ultrathin-layer cells with
interelectrode spacings on the nm level [2]. To avoid problems with maintaining the
electrodes in a parallel configuration at these small distances, the electrodes have a
cylindrical shape and are oriented perpendicular to one another (i.e., in the
crossed-cylinder arrangement shown schematically in Fig. 1). In such a configura-
tion only a single contact area (with smeoth electrodes) is achievable. An approxi-
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Fig. 1. Orthographic schematic of ulirathin-layer crossed-cylinder cell.

mate treatment of the steady-state current~distance behavior in such a cell showed
that, unlike planar electrode cells. the current became independent of interelectrode
spacing at short distances [2]. Other electrede configurations that have similar single
area contact properties involve spherical and conical electrodes, and we describe
here the behavior of thin layer cells based on these electrode geometries (see Fig. 2).

Three coordinates are required to describe mathematically these electrode surfaces,
and the diffusion layer consequently grows from them in three dimensions. At any
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Fig. 2. Thin layer cells. (a) Twin hemispherical cell. (b) Model for twin hemispherical cell. Flux J,
parallels the = axis and is confined between area strips approximating parallei-plate electrodes. Flux J,
from surrounding solution is ignored. (c) Hemisphere/plane cell. (d) Twin conical cell. (¢) Cone/plane
cell.
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interelectrode separation, therefore, species can diffuse into the interelectrode gap
from the bulk solution. If the separation is very small, however, the concentration
gradient in the small interelectrode gap is much greater than that at the peripheral
electrode edges. Because the diffusive current is proportional to this gradient at the
electrodes surface, in accordance with Fick’s first law, the cell current is highly
localized within this narrow-gap region and, to a first approximation. arises from a
one-dimensional flux of the redox couple in this region to and from the electrodes.
Various expressions for the steady-state current for different electrode geometries
are derived below with this approximation.

It is important, however, 1o assess the accuracy of the one-dimensional-flux
approximation used to derive these simple analytical equations. The validity of the
approximation was investigated by calculating from the continuity equation. the full
three-dimensional flux of a redox couple to the electrodes of a relatively simple thin
layer cell, one that is formed from two axially aligned conductive hemispheres
facing one another as shown in Fig. 2a. From the flux the diffusion-limited current
generated by this twin hemispherical cell was determined and compared to that
based solely on a one-dimensional flux. The results indicate that the one-dimen-
sional-flux approximation is a good one for this cell at short separation distances.
Its applicability to cells based on different geometries is also discussed. Other
electrochemical cells and configurations based on closely spaced electrodes. e.g..
parallel planar electrodes, have been described elsewhere [3.4].

EQUATIONS BASED ON ONE-DIMENSIONAL-FLUX APPROXIMATION

The equations approximating the steady-state current between any two electrodes
(or arbitrary shape) forming a thin layer cell can be derived in all cases by modelling
each electrode as a series of contiguous, thin circular strips, each of which ap-
proximates a parallel-plate electrode of equivalent area (see Fig. 2b). The fluxes of
electroactive species to and from these strips are furthermore assumed to be parallel
to the axis of symmetry passing through both electrodes (e.g., for the hemispherical
cell, the line passing through the hemispheres’ centers). This approximation implies
that each strip of one electrode “communicates™ electrochemically with only the
corresponding strip on the other electrode. The current generated by the thin layer
cell is then approximated by summing the individual currents generated by the
series of parallel-plate electrodes.

The fundamental equation on which these derivations rest relates the steady-state
diffusion-limited current A/ between two parallel-plate electrodes of area AA
separated by the distance / to the concentrations and diffusion coefficients of all
electroactive species. The analysis is simplified if only the oxidized (Ox) and
reduced (Red) forms of one species are present each at a bulk concentration ¢* and
the two species have equal diffusion coefficients, D. If the electrodes are perpendic-
ular to the axis of symmetry z, then at steady state
dzco d:C R

D—r=D——F= 1
z° dz* M)
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and

Ai=2nFAADc* /1 (2)
where nf is the charge passed during 1 mol of reaction and ¢, and cg are the
concentrations of the oxidized and reduced forms of the couple, which depend on z.

Twin hemispherical elecirodes

The steady-state currents at a number of electrode pairs of different geometry
can be derived, using eqn. (2) as a starting basis. For two hemispheres of radius R
separated by the distance r,, the span / between any two parallel strips is (see Fig.
2b)

l=ry+2h (3a)
where
h=R(1-cos @) (3b)

The angle 6 is measured with respect to the axial symmetry axis, as shown in the
figure, and the area A4 of each strip is 27R? sin 8 Af. The magnitude Ai of current
at each strip is thus

_ 47R*nFDc* sin 6 A8

Aj
! o+ 2R(1 —cos 8) “)

or, in (dimensionless) differential form
di _ 2sinf8dé@ =ﬂsin0d05d1, (5)

2nRnFDc* Yy+2(1~cos @) an

where vy =r,/R, 9f/9n is the dimensionless concentration gradient at the electrode
surface, and /| is the dimensionless steady-state current.

The expression for I, is obtained by summing over all of the di contributions,
i.e., by integrating the second term in eqn. (5) over all appropriate # values

i ’2 sin 6 44

Iv= 27RnFDc* —2-/: v+ 2(1 ~cos 8) =In(1+2/y) ©
Note that, in contrast to the parallel-plate electrode for which the current is
inversely proportional to the separation distance, /, increases only as the logarithm
of the separation distance. At very short distances, when y < 1, I, = In(2R/r,).

Hemisphere-plane electrodes

If the cell is formed from a single hemispherical electrode of radius R facing a
planar electrode, and the two are separated by the distance r,, as shown in Fig. 2c,
the dimensionless current /, is

R S -1
L=In(R/rp) y<=1 (7b)

where v = r,/R as before.
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Twin conical electrodes

For a cell formed from two right circular cone electrodes separated by r, and
facing one another as shown in Fig. 2d, the dimensionless current /, is similarly
derived. The area AA4 of the thin circular strip in this case can be shown to equal
27r(1 + a*)/?Ar/a, where r is the strip radius and a. the aspect ratio, equals the
radius R’ of the conical base divided by the conical height H. Equation (2) becomes

2 1/2 P
Ai= 4n(1 +a”) "“nFDc*r Ar (8)
a(ry+ 2r/a)

where [ = r, + 2r/a is the span between the corresponding electrode strips. Writing
eqn. (8) in its differential form and integrating from r=01to r= R’, one obtains
after some algebraic manuipulation

=1+ )3 - 0+ 2/v") ©

i
= 2R’ nFDc*
where v’ =r,/H.

I,

Cone / plane electrodes

For a right circular cone and a planar electrode separated by r, (see Fig. 2e), the
current [, is
i

= 5o = (1 +e) 1=y In(1+1/7")) (10)

I,

Crossed-cylinder electrodes

For completeness we include the formula for the steady-state current at crossed-
cylinder electrodes (see Fig. 1), based on the one-dimensional-flux approximation
and derived elsewhere [2}:

ihg _ . .
h= 2magbonFDc* 1=y In(1+1/y") (11)
Here a, and b, are the major and minor axes of the ellipse defining the effective
electrode area, ho=(ag— b3)'/%, y* =ry/hg, and r, is again the separation dis-
tance between the electrodes.

Interestingly, eqns. (9)-(11) predict that the currents generated by these last three
cells are independent of the separation distance as y— 0, in agreement with

experiments based on the crossed-cylinder cell [2). These various /,’s are plotted as
functions of the various y’s in Fig. 3.

COMPLETE FORMULATION OF THE TWIN-HEMISPHERICAL-ELECTRODE PROBLEM

To test the accuracy of the approximation for the steady-state currents in the
different thin layer cells, which neglects lateral diffusion between the cylindrical
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Fig. 3. Steady-state current /, vs. y for the (a) twin hemispherical cell, (b) hemisphere /plane cell, (c)
twin conical cell, (d) cone/plane cell, and (e) crossed-cylinder cell. a=1.

solution elements and from outside the interelecirode gap, a more complete analysis
of the diffusion-limited current generated in the twin hemispherical cell was
undertaken. The full treatment also allows a determination of the time required,
from the initial imposition of potential between the electrodes. for the current to
attain its steady-state value. In general, for any thin layer cell, the consideration of
additional fluxes orthogonal to the axial flux treated above necessitates solving the
continuity equations for the concentration profiles of all electroactive species and
calculating from these profiles all fluxes to the electrodes. For the radially symmet-
ric hemispherical cell examined in detail here, the continuity equation is best
expressed in cylindrical polar coordinates. If the oxidized and reduced forms of only
one species are present, then

aCo _ alco 1 3(.‘0 a:CO

T _1_)0(—ar2 ot 8:2) (12)
deg 3%g  10cg 3%

5 DR(_arz + T + _azz ) (13)

where co (cg) and Dy (Dg) are the concentration and diffusion coefficient of the
oxidized (reduced) form, ¢ is time, and r and z are the radial and axial coordinates
defined in Fig. 2b. No angular flux appears in the equations because of radial
symmetry. Hence the three-dimensional transport problem is effectively a two-di-
mensional one, which requires solutions for ¢, and cg in a plane passing through
the centers of the two hemispheres (see Figs. 4a and 4b).

If Ox, initially present at concentration ¢§, is exhaustively reduced at the upper
hemisphere, and Red, initially present at concentration cg, is exhaustively oxidized
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Fig. 4. Simplification of current calculation by use of symmeiry. (a. b) Reduction from three to two
dimensions by radial symmetry. Shaded areas represemt non-conducting planes. (b. c) Replacement of
eqn. (18) by eqn. (20) as a boundary condition. (c, d) Reduction from two quadrants to one quadrant by
radial symmetry. (d) Schematic represeniation of boundary conditions. (e) Vector representation of
two-dimensional flux to electrode surface.

at the lower hemisphere, the initial and boundary conditions that must be satisfied
are

co(®, 1=0)=c5 (14)
O (1)
co(®,, 1>0)=0 as)
CR((va t> 0) =0 (17)
dcg co )\ deg dco | ~
fo..o:((DRT+D°3T)'+(D“T+Doa_z)z)'a7—o (18)

where ®, ®,, and ®, are functions of r and z describing the physical volume
occupied by solution and the surface areas of the upper and lower hemispheres,
respectively, 7 and Z are unit vectors in the r and z directions, and d4 is a vector
representing any differential area element of either hemisphere. The final equation
states that the flux of Ox to the upper and Red to the lower electrode must equal the
flux of Red away from the upper and Ox away from the lower electrode.
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The solution of this problem is greatly simplified if a limiting case is considered,

in which ¢§ = ¢ = ¢* and Dy = Dy = D. For this case, these equations imply that
at the electrode surfaces
cr(®y. 1>0) =co(®;. 1>0)=2c8 =2¢f =2c* (19)

In light of egns. (16) and (17), a plane must exist between the hemispheres at z =0
at which
Co=Cr=¢3=CR=c", =0 (20)
at all times (see Fig. 4b). Because concentrations in this plane do not change with
time, eqn. (20) can replace eqn. (18) as a boundary condition, and solutions for Co
and cg are consequently required only in the upper half of the r-z plane (see Fig.
4b and 4c). Furthermore, since cq(r. z)=co(—r. z) and cr(r. 2)=cgp(-r. 2)
because of radial symmetry, the problem is again simplified and solutions to egns.
(12) and (13) are subsequently required only in the first quadrant of the r-z plane
(see Figs. 4c and 4d). In addition, reflection of the Ox concentration profile in the
= =0 midplane yields the Red profile at all times, and only one (e.g., eqn. 12) of the
continuity equations must be solved. Finally. to simplify the problem further, it is
assumed that both hemispherical elecirodes are affixed to non-conducting infinite
planes, which confine the solution such that |z| <r,/2 + R. as shown in Figs.
4a-4d.

Equations (12) is cast here in a dimensionless form prior to finding its solution.
Introducing the variables

¢=r/R (21)
e=z/R (22)
f=co/c§=co/c* (23)
T= Dyt/R* = Dt/R? (24)
eqn. (12) can be written as

-kt T e, (25)
subject to the initial and boundary conditions

f(®'. T=0)=1 (26)
f(9;, T>0)=0 27)
f(e=0.T>0)=1 (28)

where ®’ and @] are the equivalent solution volume and surface area described
above, but now expressed in dimensionless units, and the subscripts on f denote
differentiation with respect to the subscript variable. The expressions for ® and ®;
are, respectively

o> (1-(e=(1+1/2)))7,  v/2<e<1+v/2:£20.05e<y/2 (29)
o t=(1-(e-(1+v/2)))”,  y/2<e<1+y,2 (30)
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where, as before, y=ry/R, the dimensionless separation distance between the
hemispheres.

Since eqn. (25) is second order’in { and ¢ and first order in T, one initial and
four boundary conditions must be specified. Two additional boundary conditions
are

f§|§_0=0. O0ge<y/2 (31)
folemreyn=0. §>1 (32)

The first is a consequence of radial symmetry. The second implies that Ox does not
cross the plane to which the upper hemisphere is affixed. All four boundary
conditions are represented schematically in Fig. 4d.

The current generated by the cell is calculated from Fick's first law. The charge
in mol/s crossing the small area band A4 shown in Fig. 4d is given by the dot
product

.Y (33)

where J=7, + 7T, is the vector sum of flux in the radial (J}) and axial (7)) directions
and the vector AA has the magnitude |3A| and a direction normal to the surface.
Thus the (signed) current Aj at arena AA is

Ai=nFi-BA (34)
Since
7= - Do ooy 35
r (o] ar r ( )
- dco
S (36)
and the magnitude |3 A| of the area strip in Fig. 4d is
|AA| = 27R? sin 9 A0 (37)
Ai for this strip equals
3
Ai= —nFD, (—c‘l) F+(9°—) 7). 34 (38)
ar /. az /.
or
A 2 aCO aCo .
Ai= —=2%R*nFD, =5 | 08 ¥, + Yy cos¥, | sin 8 Af (39)

where the angles ¥, and ¥, are defined in Fig. 4e and the subscript *“s” denotes
evaluation of the derivatives at the electrode surface. (The vertical bars indicate
absolute values, i.e., | x| = |—x].) Expressing ¥, and ¥, in terms of # and using
egns. (21)-(23), eqn. (39) can be rewritten in dimensionless form as

af af

s .2
T sin“@ + 3¢

1]

ai .
27RnFDc™ '(  sin 28/ 2) a8 (40)
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or, in differential form, as

di _ _{3f] .2 af| . of . _
SoRRFDe* ( 3 ssm 0+ 3¢ |, sin 20/2) dé = Hsmﬂdﬂ: -d/, (41)

where 3f/dn is the dimensionless concentration gradient (cf. eqn. 5) normal to the
electrode surface. As before, the magnitude /, of the dimensionless current is
obtained by integrating the second term in eqn. (41) from 8 =0 t0 8 = 7 /2

1 of

—_ it _ |3 e |
e oyl “ag sin”6 +

-3

de

The current 1, is defined by the absolute value of i, which is negative because the
angle between J and d4 lies between 7/2 and .

The current 7, is always greater than or equal to I, for all y. as is now argued. If
the sum f;+f;/{ were zero for all § and e. eqn. (25) would reduce to the
one-dimensional diffusion equation from which /, was derived. In this case 3f/0T
< 0 and thus £, <0 at the electrode surface, equalling zero only under steady-state
conditions. The sum f; + f;/¢ is not zero at the electrode surface, however, but is
less than or equal 10 zero, because Ox diffuses to the upper hemisphere from the
surrounding solution. The right-hand side of eqn. (25) is consequently always < f,,.
Since the current increases as 9f/97 decreases (i.e.. increases in absolute value),
L=z1,.

Since I, depends on 8//9¢ |, and 3f/3¢| , eqn. (25) must be solved for f prior to
the computation of /,. Both f and /, were determined numerically, as described
below.

sin 20/2) de (42)

NUMERICAL ANALYSIS

Equation (25) was solved numerically using finite difference equations that
approximate the spatial and temporal derivatives of f at discrete points in the {-e¢
plane by algebraic equations. Approximating the temporal derivative at the arbi-

trary point f=f, ({={,, €=¢g) by

3 AT ™
5%- = fT ZTT fT (43)
where AT = A(Dt/R*) = D A1/R?, eqn. (25) can be approximated as
1
frosr=fr+ AT fi+ £+ £) (44)

Thus f at any time T+ AT can be calculated at the point f, = f,({,, €o) from
knowledge of f, and the spatial derivatives of f at f, and time 7. Since f(¢’, T=
0) =1, f’s at subsequent times can be calculated iteratively.

Two types of two-dimensional networks (i.e., sets of discrete points ({,, €,)) were
used to compute f and its derivatives. The first is the modified square network
shown in Fig. 5a in which all points well removed from the circular boundary were
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Fig. 5. Two-dimensional networks used in solving eqn. (25) numerically. (a) Square network. Note
“ficticious™ nodes fp at {= — AS. (b) Exponential network. (c) Five-star network from which spatal
derivatives were calculated. (d. e) Networks from which surface derivatives were calculated.

separated from their four nearest neighbors in the { and e directions by the
dimensionless spacing A{ = Ae¢. Points nearest the circular boundary were separated
from their neighbors on the boundary by irregular spacings slightly greater than A{.
The second network, which is computationally more efficient than the first (espe-
cially for small y), consists of a central square network (as described above) that
connects a network expanding exponentially away from the circular boundary to
one that collapses exponentially near the origin (see Fig. 5b). In these exponential
networks, the distances between any three colinear points are such that the second is
a constant multiple of the first. By use of these combined subnetworks, the total
network is kept relatively small, even for small y. The smallest spacing between
points, at the base of the collapsing exponential network, is A{ = Ae.

These exponential networks should not be confused with those introduced by
Joslin and Pletcher (5] and refined by Feldberg [6]. In their networks, the rectangu-
lar cells formed by intersecting nodal lines are associated with representative
concentrations located near (but not at) the centers of the rectangles. Here, the
points f, represent concentrations at the intersections of the nodal lines.

Numerical approximations to the spatial derivatives f;, f;;, and [, at each f,
were calculated from finite difference equations derived from the irregular five-star
network connecting f, with its four nearest neighbors in the ¢ and ¢ directions, as
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shown in Fig. 5c. These neighboring concentrations f,, fg. fp, and fg (which can
represent either boundary values or solution concentrations) were expressed as
truncated Taylor series expansions around f; {7-9), viz.

Ia=lo+aAef,+a® A%, /24 -+ 45)
fo=fo— b AL+ b AL /2 + - - .
fo=fo+d Alfy+d* AL /24 -+ @)
Jo=fo—g Bef,+ 82 A, J2+ -+ -

where a Ae, b A{, d A{, and g Ae are the dimensioniess distances between f, and
the adjacent network element and f;, f. f;. and f, are the first and second
derivatives of f at f; at time 7. These equations are combined to obtain the
following spatial derivatives

jow L To=(d/e) S (1= (/b)) o
Yy d+d*/b

2 2
P O (Sl U G204 VR
Xas: d+d/b (50)
1

= mr(/,,. fo. fo. b, d)+ O(AL)

+ 0(AL?) (49)

1
the

/. =_2_fo+dfn/b—(]+d/b)fo
8 Ap? bd + d?
2

= 336U Jo- fo. b d) + 0(8)

+ O(AS)
(51)

_2__ fA+afG/g— (1 +G/g)fo + O(A()
Ae? ag + a? (52)

ZH(fy fou o . §)+ O(86)

foo=

where O( ) is a truncation error of order 8, X = {/A¢, and the functions F, G, and
H are defined by the 3-term difference equations.

From these equations, algebraic approximations to eqn. (25) were derived for all
fo’s. In particular, the approximation for all fy’s within the boundaries shown in
Figs. 5a and 5b was obtained by substituting eqns. (50)-(52) into egn. (44) and
equating A{ to A¢

Jroar=/r+ zAg—Tz(zG+F/X+ 2H)+ 0(A¢)  forall &' (53)
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Here AT/A}?= D At/R® At*=DMA is a dimensionless time whose magnitude
determines the time interval between successive iterations. Its upper limit is dictated
by the requirement that f remain non-negative and consequently depends on the
magnitudes of the scaling coefficients a. b. d. and g. When these coefficients are
> 1 (i.e.. when A{ and Ae are the minimum spacings between adjacent points), the
upper limit to DMA can be shown to equal 2/9, which is somewhat smaller than
the maximum DMA associated with one- and two-dimensional rectangular net-
works. DMA = 1/2 and 1/4, respectively. (The small difference is attributable to
the term f;/$.) The stability of all calculations reported here was assured by
choosing DMA < 0.22.

The boundary condition, egn. (31), was implemented by equating the *ficticious”
node fy 10 fp for all f, at §{ =0, as required by radial symmetry (see Fig. 5a). The
singularity in the term f;/{ at { =0 was addressed by L'Hospital’s rule [9]. The
result. obtained by differentiating both numerator and denominator with respect to
¢ and taking the { — 0 limit. is

gli_l.T})f;/f =[x (54)
and thus
frear=fr+DMA(4G+2H)+0(Af) §=0.0<e<7/2 (55)

with fp = fp in expression G for all { = 0.

The boundary condition, eqn. (32), cannot be implemented as above because no
nodal element f, exists above the planar boundary. Equation (48) was rearranged
instead to give, with f,=0

fu= = (fo—fo) + O(8e).  e=1+y/2.8>1 (56)
g" Ae

and eqn. (44) for this case we approximated as
frear=fr+DMA(2G + F/X +2(f = /5)/8°) + O(4¢), e=1+vy/2,{>1
(57)
The derivatives 8f/d{|, and 0f/d¢], required to calculate current I, were
estimated at discrete 8 values by fitting the f,, f3. fp, and f; values comprising
each five-star network adjacent to the circular boundary, and one additional

neighboring point on the boundary (see Figs. 5d and 5e), to the following truncated
Taylor series expansion about f; [10]

f=lo+f;(E=8) +file =€) + i (E = &)
+§fu(“¢o)2+f;.(§‘fo)("“o)+ (58)

The cross derivative f;, at f, equals approximately

 fo+fyd AL+ fh Ae+ £ (d AY)' /2 + [, (h Ae)'/2
e dh A% Ae

+ O(A¢) (59)
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when the five points fit to eqn. (58) are spatially oriented as in Fig. 5d. (Quantity h
is defined in the figure.) Differentiating this equation with respect to ¢ and ¢ and
evaluating the derivatives at f, (i.e.. on the circular boundary representing the
electrode surface), one obtains

g_ﬁ =i+ frua B+ O(A€) (60)

g—{’ = [+ f.a Ae + O(Ae?) (61)

Such fits to eqn. (58) were made only when 8 < #/4. For #/4 < 8 < m/2. the five
points fit to eqn. (58) were spatially oriented as in Fig. Se. For these cases. eqns.
(59)-(61) are replaced by

_ S A+ g b= (fo+ fiulh 80)/2+ [ (8 8¢)'/2)

-g% =fi— fub AL+ O(AS?) (63)
£| 1= hbas+o(ar?) (64)

Note that the expressions for the surface derivatives are more accurate than the
other spatial derivatives. The high accuracy of the surface derivatives is a prere-
quisite to calculating accurate currents.

The dimensionless current /, was then calculated from these surface derivatives
and eqn. (42). The integral was computed using Simpson’s rule, as modified for an
irregularly spaced net of 8 values.

The validity of this numerical formulation was affirmed by material balance [11].
As long as the diffusion layers formed at the hemispheres do not overlap, the charge
passed at the electrodes corresponds directly to the depletion of electroactive species
in the immediate electrode vicinity. A1 the upper electrode, for example, where Ox is
reduced to Red

f’i di'=nF [ (c§~co) AV (65)
0 [ 4

where dV' = 2ar dr dz is the differential cylindrical volume element and the volume
® over which integration occurs is sufficiently large to include all ¢, < c&. With the
dimensionless parameters defined above, eqn. (65) can also be written as

frzz dr’= [ (1-£)5 d8 de (66)
0 P’

The numerical evaluation of both of these integrals yields results differing by only a
percent or so, even after thousands of iterations, thus confirming the method.

All calculations were carred out on a CRAY X-MP/24 supercomputer at the
Balcones Research Center of the University of Texas.



RESULTS AND DISCUSSION

Figure 6 is a plot of current J, vs. time T for various separation distances y. The
bottom six and top two solid curves were generated using the square and exponen-
tial networks, respectively; the J, corresponding to the separation y = 0.009983 was
determined using both networks. In this case, the exponential-network computation
(represented by the dashed curve) required only one-fiftieth of the time required by
the square-network calculation (represented by the solid curve). The latter calcula-
tion was stopped slightly prior to reaching quasi-steady state because of this
inefficiency. The discretization error between these curves, approximately 2.2%, is
quite small.

] Y = 0.00100

] 0.00200

6 L --210.009983

\M’ 0.04219

4 M
. + 0.08817
——————————— 01880

104935

u1013

+2.000

Fig. 6. Instantaneous current /, vs. time 7 for various y. Solid curves were calculated numerically:
bottom boldface curve was calculated from eqn. (68). Upper two dashed curves represent analytical
approximations given by eqn. (72). T= Dt /R?; y =1, /R.
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An analytical limit, which the numerical results must satisfy, exists for /, as
vy — o0. In this case, the time at which the two electrodes’ diffusion layers overlap
approaches infinity. Prior to this time (i.e., for any finite T'), the diffusion layer at
each electrode is hemispherical and the surface concentration gradient is uniform
over the whole electrode surface, as will be shown below. The hemispherical
diffusion-limited current i,, for this case should consequently equal 1/2 the
diffusion-limited current iy at a spherical electrode of radius R, which is [12]

2 1 1
; =17, = hd ) —
2iy, =ig=4nR*nFDc ((W 1)1/2 + R) (67)

The factor 1/2 is introduced because the surface area of a hemisphere is one-half

that of a sphere. Using eqn. (24), eqn. (67) can be written in the dimensionless form

of
on

iZot = 1 +
27RnFDc* (WT)‘/2

= ]2x (68)

where, as before, df/0n is the dimensionless normal derivative at the electrode
surface and 7, is the dimensionless limiting current. The bottom bold curve in Fig.
6 is a graph of eqn. (68). A short times the numerical calculations superimpose on
this curve, as expected. The time at which the results diverge from eqn. (68) also
decreases as y decreases, since feedback becomes increasingly significant at short T
for small y.

The curremt I, clearly differs from the numerical evaluations of 7, when y > 1;
eqn. (6) predicts that /, - 0 and the numerical results, in conjunction with eqn.
(68). suggest that I, =1, as T and y approach infinity. The discrepancy decreases
significantly, however, as y is reduced. Table 1 reports the absolute and relative
errors between I, and the limiting /, value, as determined from Fig. 6, for various
y. (Not all of these /,'s are plotted in Fig. 6.) The relative error is already less than
~ 0.1 for y <0.01. The absolute error I, — /, is interestingly constant, equalling
0.602 + 0.006, over the 42-fold range, 0.001 < y < 0.04219. Since I, = I, on theoreti-
cal grounds for all v, eqn. (6) approximates the quasi-steady state /, value to within
10%, as long as y < 0.01.

Because the solution volume is unbounded in the ¢ direction, 3//97 <0 for all f
and the concentration profile never reaches steady state. As shown in Fig. 6, the
current I, nevertheless approaches a steady-state value, implying that 3f/07 = 0 in
the immediate vicinity of the electrode. This steady-state current can be calculated
directly by equating 8f/97 in eqn. (25) to zero. Such a calculation sacrifices a
description of the current transient but is independent of A7, which must be
excessively small when y << 1 and A{ << 1. (As a consequence, ~ 5 X 107 iterations
were required to generate the uppermost curve in Fig. 6.) The steady-state calcula-
tion was implemented by setting equal to zero the expressions in the parentheses of
eqns. (53), (55), and (57), solving these expressions for f; in terms of f,, /s, fp. and
f. guessing the initial values of all fy’s, and calculating iteratively new fy’s from
previous ones, until [, converged to a nearly constant value. Only a few thousand
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TABLE 1
Absolute and relative errors between I, and /, values determined from Fig. 6. J; was computed from

eqn. (6)

Y h I (T) (I, -h)1 -
0.00100 7.601 8.208 (0.688) 0.0740 0.607
0.00200 6.909 7.503 (0.810) 0.0792 0.594
0.009983 5.305 5.904 (0.792) * 0.101 0.599
0.04219 3.879 4.485 (0.923) 0.135 0.606
0.08917 3.154 3.775 (1.298) 0.165 0.621
0.1880 2.454 3.109 (1.438) 0.211 0.655
0.3284° 1.959 2.646 (1.871) 0.260 0.687
0.4935 1.620 2.338 (2.010) 0.307 0.718
0.7463 " 1.303 2.055 (2.553) 0.366 0.752
1.013 1.09% 1.869 (2.833) 0.417 0.779
1.522° 0.839 1.655 (3.916) 0.493 0.816
2.000 0.693 1.534 (4.825) € 0.548 0.841

* Based on exponential-network calculation.
b Curve not shown in Fig. 6.
¢ Complete transient not shown in Fig. 6.

iterations were required to reach steady state using this procedure, irrespective of v.
Table 2 reports the relative and absolute errors between /; and the steady-state /,
computed as described here. Note that the /,’s for y=0.001 and 0.002 are only
slightly smaller than the corresponding values reported in Table 1. As observed
above, the difference I, — I, is relatively constant, equalling 0.583 4 0.002 in this
case. Thus the data suggest that at quasi-steady state

L=1+06 y<l (69)

for reasons not readily apparent.

Figure 7 is a plot of the magnitude |df/dn| of the dimensionless normal
derivative at the electrode surface at various times T vs. angle 8, for v = 0.009983.
The solid curve is the one-dimensional gradient given by eqn. (5), whereas the points
represent df/dn values determined numerically. Prior to overlap of the electrodes’

TABLE 2
Absolute and relative errors between J; and /, values determined by equating 3//37T to zero. f; was
computed from eqn. (6)

Y 5 L 2= hy/hL I,-h
5x10~¢ 12.899 13.480 0.0431 0.581
1x10°3 12.206 12.788 0.0455 0.582
§x10°3 10.597 11.179 0.0521 0.582
0.0001 9.904 10.487 0.0556 0.583
0.001 7.601 8.185 0.0713 0.584

0.002 6.909 7.495 0.0782 0.586
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Fig. 7. Plot of |3f/3n| vs. # for y = 0.009983 and various 7. Solid curve is given by eqn. (5); points
represeni numerical data. The horizontal bars on the right-hand side represent |3f/3n|. as calculated
from eqn. (68).

diffusion layers, 9f/dn is independent of § and equals approximately the spherical
gradient given by eqn. (68), as argued above (curve a; some discretization error at
this short time is apparent). As the diffusion layers overlap increasingly at later
times, the computations show that 3f/dn is well approximated by the one-dimen-
sional gradient over an increasingly large 6 range (curves b-h). This behavior is not
surprising for small 8 but is somewhat unexpected for the larger 8 values. For very
large 8. however, 3f/0n does not diverge from the spherical gradient, because the
diffusion layers have not yet overlapped in the large fraction of solution not near
both hemispheres. As T increases further and I, approaches a quasi-steady-state
value, 3f/0n for all @ is closely approximated by the one-dimensional gradient
(curve i). (Note that 7, (T=10.0110) and 7, (T =0.641) in Fig. 6 are substantially
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different, even though the corresponding concentration gradients in Fig. 7 are quite
similar. This apparent discrepancy exists because the bulk of the electrode area is
associated with large 8 values.)

Thus, to a first approximation, this thin layer cell and its surrounding solution
volume effectively behave (at least for small y) as if composed of two regions. The
first is a small cylindrical region, whose volume increases with time, that is centered
about the = (or ¢) axis and in which the current is attributable principally to
one-dimensional axial diffusion. The second is the surrounding peripheral region, in
which the current is attributable principally to radial diffusion. These observations
furthermore suggest a means for approximating /, analytically when y <« 1. Prior to
the time T, of diffusion-layer overlap, I/, can be approximated by eqn. (68). For
times 72> T, eqn. (5) gives approximately the current in the central cylindrical
region, if integrated from 8 =0 to § = ;. where 8 is determined by the intersec-
tion of the two functions describing the one-dimensional and spherical concentra-
tion gradients

1 2

—_ 1= 7

(er)? T ¥+ —cos 07) )

or where

cos 8 _l(_2___ +7) ToxT<o (71)
T2 (27)? +1 ' o

Furthermore, eqn. (68), multiplied by cos 8, describes approximately the current in
the surrounding peripheral region. The factor cos ;. the ratio of the surface area of
this peripheral electrode region to that of the hemisphere. corrects for the reduced
electrode area. The twin hemispherical cell current is then approximated by sum-
ming these currents. The result is

1, _l—m +1+ Uro(ln(l +2(1-cos 8;)/y)+ (

2= (=T) " (7rT)V2 +1}
y<1

(cos 8, — l)}

(72)

where Uy, is the Heaviside (unit) step function, equalling 0 when T < T; and 1 when
T > T,. Quantity Ty is determined by setting 8= 0 in eqn. (70) and solving for T
B 1 Y 2~ 72
71)-,,(2-.,)”4.,, vl ™)
The dashed curves in Fig. 6 are plots of eqn. (72) for the two smallest y values.
The agreement between eqn. (72) and the numerical results is especially good at
short times, when 8; and the central cell volume are small. As 7 and #; increase,
however. the approximation 3%¢/dz° =0 in the central region of the cell becomes
poorer and the curves diverge.



The finding that the twin hemispherical cell effectively behaves as a stack of
numerous parallel-plate electrodes is somewhat non-intuitive when y is small.
Because the radius R of curvature is much greater than the separation distance 7, in
this case, the two electrodes resemble parallel plates in the vicinity of 8 = 0, where
af/0n is the largest. One might consequently anticipate that the current would be
localized entirely in this plate-like region. The current at any thin circular strip.
however, is proportional to (9f/0n) sin 6 (see eqns. 5 and 41). which reaches a
maximum value for some 8 > 0. (For example, the one-dimensional model predicts
that the current As is largest at the strips for which §=15.7° and 11.7° when
y = 0.009983 and 0.04219, respectively.) The factor sin # weights the normal deriva-
tive because the strip area increases with angle 8. Hence the current is not restricted
to the 8 =0 region but is also significant in the immediately surrounding region.
The cell consequently does not behave as a single set of two parallel plates separated
by r,.

Although the numerical solution of eqn. (25) was simplified by considering only
the limiting case in which Dy= Dy and 8 =cg, the results reported here, if
properly corrected, should also apply to less specific cases. In general, the steady-state
diffusion-limited current generated at two parallel-plate electrodes by a redox
couple, the constituents of which have unequal diffusion coefficients and are present
in unequal concentrations, is given by eqn. (2), with D replaced by Dy Dy /(D +
Dg) and c* replaced by ¢g + ¢ [1). Because the hemispherical cell behaves as a
contiguous stack of parallel-plate ¢electrodes. the substitution of the above formulae
for D and ¢* in the steady-state /, expression should similarly correct the data
presented here.

CONCLUSIONS

The numerical results presented above show that the diffusion-limited current
expected at a thin layer cell constructed from two hemispherical electrodes can be
predicted to within 10% by eqn. (6), if the distance between the electrodes is less
than one-hundredth of the hemisphere radius. From these results some tentative
conclusions are now drawn regarding the applicability of one-dimensional fluxes to
and currents at other thin layer cells, such as the ones shown in Fig, 2.

Of these alternative geometries, the twin conical cell most closely resembles the
model problem. The importance of radial diffusion in this case can be judged
principally by the aspect ratio a. As a — co, the cone collapses into a disk, to which
radial diffusion is small for a conventionally sized electrode (because d4 and .7: are
orthogonal). As a — 0, the cone approaches an infinite cylinder, at which a decaying
transient is expected due to cylindrical diffusion [13). Since the radial flux to the
hemispherical cell is relatively constant for T> ~1 but does not perturb /,
significantly from 7,, it is unlikely that this transient alone will have a significant
effect. Cells characterized by intermediate a values most likely behave similarly.
The one-dimensional current at the twin conical cell is thus expected to be roughly
comparable in accuracy to that for the hemispherical cell.
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The currents generated by thin layer cells formed from a hemisphere and a plane,
and a cone and a plane, should be more accurately described by one-dimensional
fluxes than currents generated by twin conical and hemispherical cells. because the
radial flux is perpendicular to the planar electrode and can only augment the axial
flux to this electrode. The equations for these cells should thus be valid whenever
the conical and hemispherical equations are acceptably accurate.

The electrode area of the crossed-cylinder cell depicted in Fig. 1 is smaller than
that of two hemispheres of equivalent radius, and the cell does not deplete
electroactive species from a hemispherical solution volume by radial diffusion. as
does the hemispherical cell, but from a smaller volume. In the light of the above
arguments. a one-dimensional flux is also expected for this case. A further study of
the flux to the electrodes of this cell is underway.

Thus a cautious interpretation of the results contained herein suggests that
currents generated by thin layer cells in which the electrodes are separated by very
short distances can be approximated by considering only the axial flux to the
electrode surface. Because the diffusive currents at these cells can be modeled
simply. such cells may well prove useful in studying solution and charge-transfer
kinetics.

GLOSSARY

abdg scaling factors for computation of spatial derivatives
c* bulk concentration of Ox or Red

3 bulk concentration of Ox

R bulk concentration of Red

co concentration of Ox

CR concentration of Red

dA differential area

D diffusion coefficient of Ox or Red

Dy diffusion coefficient of Ox

Dy diffusion coefficient of Red

DMA dimensionless time between successive iterations
/ co/cg =co/c”

fo center point of five-star network

Jas fo. fp. Jo surrounding points of five-star network

F function defined by eqn. (50)

G function defined by eqn. (51)

H function defined by eqn. (52)

iy current at spherical electrode

I dimensionless one-dimensional steady-state current
1, dimensionless two-dimensional current

I limiting J, values as y = oo

J vector sum J: and J—;

J; radial flux vector
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(=1

J, axial flux vector

! separation between parallel-plate electrodes

nF Charge number of reaction multiplied by Faraday’s constant
Ox oxidized forms of redox couple

r radial coordinate

7 radial unit vector

r separation distance between electrodes of thin layer cell
R half-sphere radius

Red reduced form of redox couple

t time

T Dt/R?

T dimensionless time defined by eqn. (73)

Ur, unit step function

X §/A8

z axial coordinate

T axial unit vector

af/on dimensionless concentration gradient

a conical aspect ratio

Y ro/R

AA area of circular strip

Al current at A4

AT D At/R?

Ac minimum grid spacing in ¢ direction

Af minimum grid spacing in { direction

€ z/R

¢ r/R

(] angle defined in Fig. 2b

[ angle defined by eqn. (71)

o function describing solution volume

®, function describing surface area of upper hemisphere
b, function describing surface area of lower hemisphere
o’ dimensionless function describing solution volume
d, dimensionless function describing surface area of upper hemisphere
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