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ABSTRACT

An alternative approach to the digital simulation of electrochemical systems based on an
eigenvector—eigenvalue analysis of the linear diffusion equations is presented. This approach is made
feasible by recent innovations in the Lanczos algorithm and the development of the recursive generation
residue method. We demonstrate that reductions in computation time of one to two orders of magnitude
over explicit simulation techniques are possible with this technique for arbitrary, linear problems with a
fixed-electrode potential; these gains are achieved without a loss in the flexibility and convenience in
formulating and coding problems characteristic of time-stepping schemes.

(I) INTRODUCTION

Digital simulations have been widely employed in the solution of electrochemical
problems, especially those involving complicated electrode geometries, applied
potential functions (e.g., in cyclic voltammetry) or kinetic schemes [1,2]. Because
explicit time-stepping methods are straightforward to formulate and code, even for
irregular geometries, chemical kinetics, and boundary conditions, they have been
very important in the development of electrochemical methodology and its applica-
tion to the elucidation of chemical problems. However, the computation times are
sometimes excessive even for systems of moderate size. For example, when the rate
constants of coupled, homogeneous reactions are very large or the electrode geome-
tries are such that two-dimensional diffusional effects must be treated, the finite
difference schemes become computationally expensive since very small time incre-
ments must be employed. This liability, in addition to the desire to utilize micro-
computers (rather than main frames) to carry out electrochemical simulations, has
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led to a search for more efficient numerical methods. Thus, exponentially expanding
space [3,4] and time [4] grids, orthogonal collocation [5] and hop-scotch methods [6]
have all been introduced in an effort to minimize the CPU time. The reductions,
however, are often achieved at the expense of decreased flexibility and increased
programming effort. For instance, with collocation techniques the program must be
modified significantly when the kinetic scheme changes, and hence the method is in
practice frequently inconvenient.

We present here a new approach to electrochemical simulations based on an
eigenvector—eigenvalue analysis of the diffusion-kinetic equations (analogous to the
treatment often employed in quantum mechanical problems). In this approach, the
spatial variables in the diffusion-kinetic equations are discretized as in finite
difference schemes; however, instead of also discretizing the time and then propa-
gating the concentrations forward from the initial concentration profile, a system of
decoupled equations is derived by decomposing the diffusion operator into its
eigenmodes. The decoupled equations are then solved trivially to yield the flux at
the electrode surface and hence the current. Note that in this approach the time
variable is treated continuously, as opposed to conventional explicit algorithms in
which time is discretized.

This strategy for solving a system of linear differential equations has been used
for many years for relatively small systems and can be found in standard under-
graduate linear algebra [7] and elementary differential equations [8] texts; neverthe-
less, it has not been applied to large systems (number of volume elements > 500)
until recently due to the prohibitive computational times required by the available
diagonalization algorithms. However, with the innovations by Paige [9,10], Cullum
and Willoughby [11,12] and others in the Lanczos procedure and the subsequent
development by Nauts and Wyatt [14,15] of the recursive residue generation method
(RRGM), an eigenvector—eigenvalue analysis is now not only viable for large
systems, but often qualitatively superior in terms of computational cost and
convenience to alternative methods.

In this paper, we consider the simplest possible situation at the electrode; a fixed
electrode potential with no coupled, homogeneous reactions. The mathematical
details are set forth in the four subsections of Sect. (II). In the first, the matrix
formulation of the diffusion operator, boundary conditions and flux operator is
presented; Section (I1.2) is devoted to a description of the eigenvector—eigenvalue
analysis of the resulting system of equations and its physical interpretation. The
third part focuses on the Green’s function formalism in which the RRGM is
couched, and Sect. (I1.4) provides a brief outline of the Lanczos algorithm and
RRGM; this subsection is elaborated on in Appendix A. Throughout the section,
the Cottrell problem [2] is utilized to clarify the formalism and illuminate the
somewhat abstract and perhaps unfamiliar mathematical constructs. In Sect. (III)
results obtained for a two-dimensional model of a single microband electrode [16]
using a finite difference scheme and an eigenvalue—eigenvector analysis based on
the Lanczos algorithm and RRGM are presented; as discussed there, utilization of
the latter technique reduces the CPU time of the explicit simulation by a factor of
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30. A summary of the advantages of the approach introduced here is given in Sect.
av).

We wish to stress at the outset that although the formalism in which the method
is presented is complex and non-intuitive, and the details of its implementation
rather involved, the actual computer program requires a minimal amount of
programming effort on the part of the user, once the Lanczos method and RRGM
have been coded. The primary user-supplied inputs are the initial concentration
profile and flux operator cast in vector notation and a subroutine (completely
analogous to the time-stepping portion of finite difference schemes) which calculates
the concentration profile resulting from the application of the diffusion operator to
a given profile. Any formulation of the diffusion operator, boundary conditions, and
chemical kinetics can be used, as long as the resulting equations are linear in all
concentrations. A single parameter, similar to the time step in an explicit program,
is adjusted to fix the accuracy of the results.

In a forthcoming paper (Part II [17]), we will address problems in which an
arbitrary time-dependent process occurs at the electrode surface (e.g., the linear
sweep problem). For this class of problems, we obtain a surprising result: for a
given geometry and set of bulk diffusive and reactive parameters, only one mass-
transfer simulation needs to be performed. The current can then.be obtained for any
set of electrode dynamics by, in the simplest situation, evaluating a set of one-di-
mensional integrals or, in the most complicated, by solving a time-dependent
integral equation for the flux. In either case, the calculation can be performed in
negligible CPU time with even a microcomputer.

(II) MATHEMATICAL METHODS

(I11.1) Matrix formulation of finite difference solution to Fick’s equation
In most electrochemical problems, the bulk diffusion is assumed to be governed
by Fick’s equation,

9C(x, t)
ot

(or its variant appropriately modified for homogeneous kinetics) where C(x, t) is
the concentration at position x and time ¢ and D is the diffusion coefficient. The
standard approach to solving eqn. (1) is to generate a system of finite difference
equations. For example, the equation for a one-dimensional system can be ap-
proximated as the set of coupled, linear, first-order differential equations,

d¢; D

_d—t=-A_x3(Ci—l_2Ci+Ci+l) (2)

=Dv3C(x, 1) (1)

where the spatial variable x has been partitioned into N discrete elements of width
Ax, and C; is the concentration of the species of interest in volume element i
(1 <i< N). In explicit simulations, it is usual to consider the time similarly broken
into discrete units At and to define a dimensionless, simulation diffusion coefficient
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Dy = (D At)/(Ax?). However, in the approach presented here the temporal varia-
ble remains continuous, and we define a dimensional constant D’ = D/Ax>.

In addition to eqn. (1), the definition of the problem also requires the specifica-
tion of the boundary concentrations (C;) and Cy,; for a one-dimensional problem)
and the initial concentration profile C(x, ¢ =0). The boundary condition at the
electrode surface is determined by the particular electrode process; for example,
C(0, t)=f(E), where f(E) is some function of the electrode potential E. Semi-in-
finite boundary conditions are typically imposed at the remaining boundaries for
simulations in which the average diffusion path length during the time monitored is
small compared to the linear dimensions of the system. For instance, if the initial
concentration distribution is uniform and equal to C*, then C(x, t) is required to
equal C* in the limit as x approaches the system’s boundaries.

To illustrate the above ideas in a matrix formulation, we consider the Cottrell
problem defined by eqn. (2), the uniform initial concentration profile C(x, 0) = C*,
and the boundary conditions C(0, )= C, and C(co, t)=C* with C; and C*
constants. For convenience, we normalize the concentrations by C*; thus defining
¢;=C;/C*, eqn. (2) becomes
dci ’ ’ ’ .

E—=Dc,._1—2Dc,-+Dc,.+1 i=1,...,N 3)
If ¢ is the column vector of length N containing the c;, and W is the N X N transfer
matrix whose elements are given by

—-2D" ifi=j,i#N
D' ifi=j,i=N

W ] ij= - 4

[ ]j DI lf Il_]|=1 ()
0 otherwise

then the system can be written in matrix form as

de ,

s We+ D's, (5a)

where s, is the column vector respresenting a source term arising from the electrode
boundary condition and hence contains ¢, as its first element with all other
elements zero. The other boundary condition ¢y, =1, or equivalently [dcy, ,/d?]
=0and cy,; =1 (at = 0), is incorporated in the definition of W. In explicit terms
eqn. (5a) is

I -2D’ D’ 0 ¢ Co
d C2 D, _2DI D, 0 * ° . 02 , 0
(E;) = 0 p’ =20’ D' 0O - . S [+D| .| (5b)

Cn . . . . .. D' =D’ cN 0
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Finally, we specify ¢(0) as the vector containing the initial concentration in each
volume element; for the case under consideration, ¢(0) is therefore given by

1
)= ©
1

Calculation of the current requires an expression for the flux at the electrode
surface, f, which is defined as

aC
f =b ( —('E ) x=0 (7)
For the Cottrell problem, the discrete representation of the flux is
D
7= (3 )ler <o) ®)

Since the boundary concentration ¢, is known, only ¢, is needed to determine the
flux. For an arbitrary geometry, e.g. a band electrode, eqn. (7) can be generalized to

=(&)E 9| ©

where the primed sum in eqn. (9) used to indicate the sum is restricted to cells
adjacent to the electrodes, and the s; are the components of s,. Equation (9) may be
expressed more compactly by reverting to vector notation. Thus, defining e” to be
the transpose of the vector with a one in the jth entry if cell j adjoins an electrode
and O otherwise.

D
Tl V3 | GRIOREE (10)
For the Cottrell problem,
e'=[1 00 - - 0] (11)

Equations (8)-(10) are important because they show that the flux is proportional to
the sum of the concentrations at the electrode surface, and therefore knowledge of
the individual concentrations c; is not necessary for the evaluation of f; this fact
will be exploited in Sect. (I1.3).

In summary, the electrochemical diffusion problem can be cast as a set of
simultaneous linear ordinary differential equations (eqns. 3-5). The solution of
these equations obtained from an eigenvalue-eigenvector analysis will lead, as
shown below, to an expression for the electrode flux of the form f=1Y,a, exp[A,t].
We later identify the A, s as the eigenvalues of W and the a,s as the product of the
projections of the corresponding eigenvectors onto the initial concentration profile
and the flux vector (the residues). The remainder of the paper addresses an efficient
approach to obtaining these sets of quantities.
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(11.2) Eigenvalue—eigenvector analysis

A standard approach to solving a set of coupled, linear differential equations,
such as eqns. (5), is to transform W into new a diagonal matrix [7,8], A. This
diagonalization produces an equivalent representation of the system in which the
transformed equations are decoupled and hence easily solved. The desired solutions
in the original representation are then found by applying the inverse transformation.

Because the formulation of the Landzos algorithm used here is only valid for
symmetric transfer matrices (although it can be generalized to unsymmetric forms
[18,19]), we will assume in the remainder of this section that W is symmetric, i.e.,
[W];;=[W],;. For problems of physical interest where W is unsymmetric, a simple
decomposition of W can often be effected so that the resulting matrix to be
diagonalized is symmetric, and hence the techniques described in Sects. (I1.3) and
(I1.4) below remain applicable (see Appendix B).

Assuming W is symmetric, a standard theorem from linear algebra states there
exists a set of N linearly independent eigenvectors y, of W and their associated
eigenvalues A, such that
Wy, =My, k=1,...,N (12a)
Furthermore, the eigenvectors are orthogonal, that is, the vector product y; - »=0
unless k =j. We define an eigenvector matrix M to contain in its kth column y,;
its inverse, M1, by the above orthogonality property is the transpose of M (the y,
are taken to be normalized to 1). Equation (12a) can therefore be written in matrix
form as
WM = MA (12b)
where A is the diagonal matrix [A],, = A,.

The real-space representation of the system given by eqns. (5) is a set of coupled,
first-order differential equations, i.e., the time derivative of ¢; depends on ¢, and c¢,,

the time derivative of ¢, depends on ¢, and c;, etc.. These can be transformed into a
decoupled representation by multiplying eqns. (5) by M ™. Accordingly,

(%)(M”‘c)=M“Wc+D'M“1s0 (13)

Setting x =M~ '¢ and z = M~ 's, and observing that M~ 'Wc =(M"'W)(MM 'c)
= (M 'WM)M™'¢) = M~ 'WMx.

(dx) = (M~'WM)x+ D%

dr
=Ax+D"2 (14a)
where the last step follows from eqn. (12b). Explicitly, eqn. (14a) is
xl Al 0 O * O x1 Zl
x 0 A, 0 - O x z
(%) 8 P ISR | GNP %2 (14b)

xN 0 0 M N AN xN ZN
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Because A is diagonal, the equations in eqns. (14a) and (14b) are no longer coupled,
ie.,

dx.
(d—’;) =A\x;+ D’z (14c)

and hence they may be immediately solved to yield
Z.
xj(t)=exp()\jt)xj(0)+D'(5\%)[exp(Ajt)—l] (15a)
J

or equivalently,
x(t) =exp(At)x(0) + D'’A"'[exp(At) —I]z (15b)

where x(0) = M~ '¢(0), I is the N X N identity matrix, and exp(A?) is the diagonal
matrix with [exp(A?)];, = exp(Ag2). In the final step, eqns. (15) are multiplied by M
to transform the solutions x(z) into the desired solutions c(z) in the real-space
representation. In matrix notation, this gives

(1) =M exp(At)M~'c(0) + D’'A*{exp(At) — I } M~ 's,] (16)

It should be noted that nowhere in the above derivation was the time variable
discretized.

For relatively small systems, the standard approaches to finding the eigenvalues
and eigenvectors of a matrix are based on the QR algorithm or one of its variants
(e.g., the subroutine EIGRS from the IMSL library). Thus if W is supplied as an
input, then M and A will be returned, whereupon M~! can be obtained as the
transpose of M; equation (16) is then easily evaluated to yield the concentrations.

While this method is feasible for small systems and perhaps still competive with
explicit schemes, it is inefficient for large problems in which the transfer matrix is
sparse. Standard diagonalization algorithms such as the QR algorithm scale compu-
tationally as N and require on the order of N2 memory locations. In contrast, the
procedure outlined below reduces both these requirements by a factor of N: the
number of operations needed by the Lanczos algorithm grows as yN? and the
storage as YN, where y is the average number of non-zero entries per row in the
transfer matrix. For the class of electrochemical problems considered here, y is
between 3 and 7 (depending on the dimension of the system), and consequently in
these cases, the Lanczos procedure can provide a qualitative advantage over other
eigenvalue routines.

In physical terms, the eigenvectors y, are linear combinations of the concentra-
tions; they constitute the static eigenmodes of the diffusion problem, while the A,
govern the system’s dynamics. The diffusion eigenmodes are analogous to the
vibrational modes of a string or harmonic crystal, with the eigenvalues replacing the
vibrational frequencies. Indeed, the only qualitative differences among the problems
are the range of the eigenvalue spectra and the nature of the boundary conditions.

Given the structure of W, the eigenvalues can be shown to be non-positive
(Gerschgorin’s theorem [7]); the A, therefore determine how quickly the eigenmodes
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Fig. 1. The three eigenvectors (weighted linear combinations of the concentrations) of the Cottrell
problem associated with the three eigenvalues smallest in absolute value: A; = —~2.732X107° (—-—),
Ay =—2459%10"% (— —),and A;=—6831X107* (------ ).

relax to the their equilibrium value. Eigenvalues small in absolute value are
generally correlated with long-wavelength eigenmodes, i.e., ones in which the
variation of the eigenvector amplitudes between adjacent cells is small, whereas
algebraically large eigenvalues are associated with eigenmodes of high spatial
frequency. Because of the factors exp(A,¢) multiplying the eigenvectors y, in eqn.
(16), the modes of high spatial frequency are quickly damped, so that only the long
wavelength modes make a substantial contribution at long times. The physical basis
for this is intuitively obvious: the diffusion process tends to smooth out any
fluctuations in the concentration profile, and therefore in the absence of external
forces, eigenmodes which vary rapidly are dissipated much earlier than those with a
lower spatial frequency.

To illustrate these concepts, the concentrations in the Cottrell problem were
evaluated by employing the IMSL subroutine EIGRS to calculate the eigenvalues
and eigenvectors of the matrix W in eqn. (5b) with D’=1, Ax=1 and N = 300.
The eigenvalues ranged in magnitude from —2.732 X 107> to —3.999. In Fig. 1 the
normalized eigenvectors associated with the three eigenvalues smallest in absolute
value are shown; in Figs. 2 and 3, the eigenvectors corresponding to the two
eigenvalues largest in absolute value are exhibited. The plots are reminiscent of the
vibrational modes of a string, with the curves in Fig. 1 corresponding to the
fundamental and first two overtones, and Figs. 2 and 3 representing extremely high
overtones. This observation is in accord with the earlier statement that eigenvectors
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Fig. 4. The time dependence of the Cottrell concentrations at various positions in a system comprised of
300 cells. From top to bottom, the curves correspond to c300(#), €200(#), €150(2), €100(2)s €s50(2), C25(2),
c10(1), and c¢,(7) where c,(¢) is the concentration in cell i at time ¢, and the electrode is located at cell 0.

with eigenvalues small in absolute value vary slowly in comparison to those with
eigenvalues at the other end of the spectrum.

Figure 4 is a graph of the concentrations at various locations in the system; these
were derived using eqn. (16) with the initial concentration distribution ¢;(z =0) =
and the boundary concentrations ¢, =0 and cy.; = 1. The bottommost curve, cl(t),
is proportional to the flux since ¢, = 0; an analysis of its functional form shows it
varies as ¢~ 1/, as predicted by analytical solutions for the current [2]. This is

TABLE 1

Comparison of the current calculated for the Cottrell problem using the numerical algorithm in the text
with the analytic solution. The numerical results are obtained by taking i(¢) and dividing by nFADY/*Cg.
The corresponding analytic quantity is 1/(mt)%?

Time Numerical Analytic Ratio

50 0.796 1071 0.797%x107! 0.998
100 0.563x107? 0.564x107! 0.999
150 0.460x107? 0.460x107! 0.999
200 0.398x107! 0.398%x107! 0.999
250 0.356x107? 0.356 107! 0.999
300 0.325x107? 0.325%x107? 0.999
350 0.301x10! 0.301x10"! 0.999
400 0.282x107! 0.282%x107! 0.999
450 0.265x107! 0.265x107? 0.999

500 0.252x107! 0.252x107! 0.999

-
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demonstrated explicitly in Table 1, where the flux computed via the present method
is compared to the corresponding analytic solution. For all times, the difference
between the two profiles is less than 1%.

The topmost curve, c,q9(?), demonstrates that in the time regime shown, the
other boundary is unaffected by the electrode process. The intermediate concentra-
tions display the time scale on which the electrode dynamics affect the various
regions of the system and the distribution of the equilibrium concentrations.

For the remainder of this paper, we restrict our attention to the case s, =0, i.e.,
the electrode potential is set so that ¢, = 0; the generalization represented by eqns.
(5), however, presents no difficulties for the methods described subsequently.

(I11.3) Green’s function formalism
With s, set equal to zero, eqn. (16) becomes
c(2) =M exp(At)M ¢(0)
= exp[ Wt]¢(0)
=G(t)c(0) 17)
The matrix G(t) = exp[W?] is referred to as the Green’s function operator; its
matrix elements G, ,(¢) give the conditional probability that an ion initially in
volume element »n has diffused to cell m at time ¢. The matrix G(¢) acting on the
initial concentration vector therefore gives the concentration profile at time ¢.
In the vast majority of electrochemical experiments, the chief quantity of interest
is the current, which is proportional to the total flux of the species being reduced at
the electrode. From eqn. (10), the flux is in turn simply related to the concentration

in the cells at the electrode surface. In the formalism of this section, eqn. (10)
becomes (s, = 0)

7= {3z )em e
- (g2 )¢ 60

20 (18)

The thrust of eqn. (18) is that G,;(#) is proportional to the flux to the electrode, and
therefore is the primary information needed to analyze most experiments.
G.;(t) may be evaluated in terms of the eigenvalues and eigenvectors of W. From
eqn. (16) with s, =0,
G,(1)=e"-G(1)c(0)
=e"- {Mexp[At]M~}c(0)

e’y exp(Act) yi - ¢(0)

N
=3
k=1
N

= Y R exp(Ar) (19)
k=1
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Fig. 5. Variation of the residues with respect to the associated eigenvalues for the Cottrell problem.

In the terminology of refs. 14 and 15, the products RY are referred to as the
residues of the system; they provide a direct measure of the coupling of the kth
eigenmode to both the initial concentration distribution and the concentrations at
the electrodes. Clearly, the residues associated with eigenvalues small in absolute
value are important in determining the current’s long-time behavior, while those
residues with algebraically large eigenvalues contribute only to the transient re-
sponse.

Figure 5 is a plot of the residues versus eigenvalues for the Cottrell problem. The
residues are positive and decrease monotonically from a maximum of 6.655 X 10~3
for the eigenvalue smallest in absolute value to a minimum of 1.182 X 1077 for the
eigenvalue largest in absolute value. The primary source of the differences among
the magnitudes of the residues is the factor y; - ¢(0). For the present problem, each
entry of ¢(0) is one, and consequently the vector product y; - ¢(0) is simply the sum
of the eigenvector amplitudes; this is tantamount to integrating the area under the
sample curves shown in Figs. 1-3. Therefore due to the nearly complete cancellation
of the areas above and below the abscissa, the total area for eigenvectors of high
spatial frequency is much smaller than for eigenfectors of low frequency, thereby
leading to smaller residues.

(I1.4) The Lanczos algorithm and RRGM

The Lanczos algorithm and RRGM together constitute a numerical procedure for
calculating the eigenvalues and residues of eqns. (19) which are strongly coupled to
e and ¢(0). Both these quantities are found by using the Lanczos procedure to
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generate a symmetric, tridiagonal matrix T which is related to W by a similarity
transformation [7], i.e., T= VWV, where V is the matrix of Lanczos vectors
described in Appendix A. The important property of similarity transformations here
is that the eigenvalues of the original and transformed matrix are identical. Because
of T’s simple and compact format (symmetric, tridiagonal), its eigenvalues and
consequently W’s may be determined efficiently using algorithms specifically
designed for matrices of this form.T is also used to determine the residues via the
RRGM formulated in refs. 14 and 15. By exploiting the structure of the Lanczos
algorithm, the method allows the residues to be calculated with only the eigenvalues
of T and T’, the matrix obtained by deleting the first row and column of 7. The
primary advantage of this approach is that the eigenvectors do not have to be
determined explicitly thereby minimizing the time and storage required to calculate
the observable.

In the remainder of this section, the similarities and differences between the
procedure introduced here and explicit methods are noted briefly; a more detailed
exposition of the Lanczos algorithm and the RRGM and their numerical implemen-
tation is provided in Appendix A.

The Lanczos algorithm is an iterative procedure involving various linear algebra
manipulations, the most important of which is the operation of W on a vector. This
multiplication is equivalent to the operation of W on ¢(#) to yield ¢(¢ + At) in finite
difference schemes, and therefore any representation of the diffusion operator
(including linear kinetic effects) used in explicit simulations may be employed. The
only condition which must be satisfied in applying the scheme is that the resulting
set of diffusion equations must be linear in the concentrations. Hence in contrast to
other specialized techniques, the procedure described here retains the flexibility and
ease of implementation characteristic of explicit methods.

Unlike the time-stepping procedures, however, the number of Lanczos iterations
L depends not on the ratio of the final time to the time increment, but rather on the
number of eigenmodes which are strongly coupled to the vectors ¢(0) and e, and the
accuracy to which the associated residues are required. The recursion number L
plays the role of the time-step in explicit simulations: by increasing L (analogous to
decreasing the time-step) more accurate solutions are obtained, and for L large
enough convergence to the exact answer is secured. In practice L is typically only a
fraction of the dimension of W, and as a consequence the number of Lanczos
recursions is substantially smaller than the number of iterations required in explicit
schemes where numerical stability considerations require small time increments.
Since the time for each Lanczos recursion is at most a small multiple of the time
required for a finite difference time step, reductions of one to two orders of
magnitude are possible.

(IIT) RESULTS

The flux for a single microband electrode was calculated using a finite difference
scheme and the procedure outlined above. The model consisted of a two-dimen-
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Ry (Ty=1) +1 [N, (T ~1)+2 RJy -1 RJ,
2N, +1 2N, + 2 3, -1 38,
N! +1 "l! + 2 2“! -1 2!&
1 2 No-1 N,
Microband N
Electrode

Fig. 6. Schematic of two-dimensional space grid used to model the microband electrode. The grid begins
expanding exponentially to the left and right in the N-direction after the middle block of three uniform
cells. The electrode is located at the center, bottommost cell. The grid also expands exponentially in the
J-direction. The cells are labeled as indicated.

sional exponentially expanding space grid with the electrode lying in the plane of
the substrate; a schematic of the grid configuration is presented in Fig. 6. Transport
was assumed to be governed solely by diffusion (with no kinetics), and the initial
bulk concentration distribution was taken to be uniform. In addition, the potential
step of the model was set so that the concentration at the electrode goes instanta-
neously to zero; at the remaining edges, semi-infinite boundary conditions were
imposed.

The exponential space grid in ref. 3 was utilized in order to reduce the computa-
tion time and extend the results to the long-time, quasi-steady-state regime. As
shown in Appendix B, the employment of this type of grid renders the transfer
matrix unsymmetric, and hence the procedure described above is not directly
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Fig. 7. Plot of the fluxes for a two-dimensional model of a single microelectrode (Fig. 6) which were
calculated using an explicit simulation and the technique presented in the text.

applicable to W. This problem can be circumvented, however, by factoring W into
the form U~ 'SU, where S is symmetric and the structure of U is arbitrary, and then
applying the RRGM to S.

The resulting fluxes are shown in Fig. 7; they were obtained with D,,=0.24
(D’ =Dy, since At is set to 1) and were normalized by the initial concentration
profile. Both calculations were performed on a Cray X-MP: the explicit simulation
[16] required 97 CPU s (750,000 time steps), whereas the RRGM program took 3.2 s
(1400 Lanczos iterations), an improvement by a factor of 30. The agreement
between the two calculations is less than 0.1% at all times shown, and hence the two
curves cannot be distinguished on the resolution of the plot. If a larger error is
tolerable, reduction of the recursion number L and other adjustments could further
enhance the RRGM’s time.

Our computer code is presently designed so that the user need only supply the
initial concentration and flux vectors and a subroutine to perform the matrix
multiplication Wq (or Sq for the cases when W is unsymmetric) for an arbitrary
vector ¢; the program returns the electrode flux. We are presently in the process of
generalizing the program so that it will handle arbitrary geometries and kinetic
schemes automatically and still remain user-friendly.

(IV) CONCLUSION

In this paper, we have established the validity of the Lanczos algorithm and
RRGM procedures for fixed-potential electrochemical simulations of arbitrary
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geometry. It is apparent that our approach yields a greater timing improvement than
most other sophisticated numerical methods (e.g., implicit time differencing, integral
equations) without, for example, the associated constraints on the boundary condi-
tions. This improvement should increase considerably the utility and convenience of
digital simulations.

The limitation to fixed electrode potential is, however, rather restrictive. Conse-
quently, Part II [17] is of great importance, since there this restriction will be
removed completely. Indeed, the advance over conventional approaches achieved in
the general case of non-trivial electrode kinetics is far greater than that demon-
strated here, and should result in a qualitatively enhanced usage of simulation
techniques.

APPENDIX A. THE LANCZOS ALGORITHM AND RRGM

In the following, we sketch the important details and formulas of the Lanczos
procedure and RRGM and expand upon the discussion in Sect. (I1.4). We con-
centrate here on the calculation of observables of the form ¢” - G(t)q= G, (0),
where ¢ is an arbitrary vector. The evaluation of ¢ - G(t)q’, where g’ + q (for
instance, G.,(¢) in eqn. (19) with q" = e" and ¢’ = ¢(0)) can be reduced to this case
by noting that
q"-G(1)g'=(3)[a"- G(1)a—b"- G(1)b]

= (1)[Gaal(t) = Gpp(1)] (A1)
where a is the vector (1/ V2)g+¢q’) and b=Q1/ V2)q — q’). Thus, two separate
calculations of the procedure outlined below are required to determine G,;(¢):
G,(1) and G,(1) with a = (1/V2)[e + ¢(0)] and b= (1/V2)[e — c(0)].
The evaluation of G,,(¢) is accomplished by utilizing an expression analogous to
eqn. (19):

q"-G(t)g=4q" -exp(Wt)q

N

=Y q" -yeexp(Mt)yi-q
k=1
N

=Y R exp(A;1) (A2)
k=1

As mentioned in the text, the first step in the procedure is the reduction of the
diffusion operator to a symmetric, tridiagonal form; in other words, the operator is
transformed from its real-space representation (W) into one in which it is tridiago-
nal (T) by the similarity transformation T= ¥V~ 'WV. The new representation is
generated by constructing a sequence of orthonormal vectors (the Lanczos vectors,
{v;}) according to the recursion formula:

Bis10i41= Wo,— a0, — Biv,_4

a;=v;- Wy,

Bii1=I1Wo,— a0, — Biv, 4 | i=1,...,L (A3)
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The iterative sequence begins with 8, =0 and the initial vectors, v; = ¢ and v, = 0.
The «; and B; constitute the diagonal and off-diagonal of the L X L matrix T, and
the {v;} form the columns of the N X L rectangular matrix V. ¥~! is equal to V7,
since the {v,;} are orthonormal.

In exact arithmetic, the algorithm would terminate at the Lth iteration (8, ,, =0,
L < N) with the L eigenvalues of T corresponding to the L distinct eigenvalues of
W whose eigenvectors have a non-zero projection on gq. However, in practice this
stopping criterion is no longer relevant because round-off error leads to a loss in the
global orthogonality of the Lanczos vectors. Instead, the magnitude of L for the
present type of problem depends on the desired accuracy. The recursion formula
may be viewed as a modified Gram-Schmidt process for the generation of an
orthonormal basis of the subspace spanned by the vectors { W™g}L_,. From this
vantage point, each recursion corresponds to increasing the dimension of the
underlying subspace in which the diffusion operator is approximated. Therefore, the
operative criterion for terminating the algorithm is to find the value of L for which
the resulting subspace contains the essential components (algebraically small eigen-
values and their residues) of G,,(?) to the required precision. For a given class of
problems, the minimum L, L_; , can be determined empirically by incrementing
systematically the number of iterations performed for a sample system, until
agreement to the desired accuracy is attained among the observables calculated for
values of L larger than L,_; . Our experience and other’s [14,15] have shown that
depending on the problem, L_;, can range from less than 1% of the system size for
very large systems up to 70% for some moderate-size systems. L_;,’s small magni-
tude demonstrates that only relatively few of the eigenvectors are strongly coupled
to ¢, and the algorithm converges quickly to the space spanned by these vectors.

Despite its advantages, the Lanczos algorithm has been applied only recently on
a regular basis to the solution of eigenvalue problems due to the presence of
numerical instabilities. In exact arithmetic, the eigenvalues of the two matrices are
identical by virtue of the similarity transformation relating T and W. However, the
finite precision inherent in numerical computations introduces into the spectrum of
T spurious eigenvalues (eigenvalues not in W ’s spectrum) and multiple copies of
eigenvalues of W (regardless of the eigenvalue’s multiplicity). The source and
behavior of this instability are now well-understood [9,10], and several procedures
have been devised to either prevent the spurious eigenvalues from appearing, or to
allow them to appear and then identify and remove them. Our approach, based on a
procedure proposed by Cullum and Willoughby [11,12], falls into the latter category.
Once T is generated, its eigenvalues and the eigenvalues of T’, the matrix obtained
by deleting the first row and column of T, are calculated. As shown empirically by
Cullum and Willoughby, the eigenvalues which appear in the spectra of both T and
T’ are precisely the spurious eigenvalues, and hence by comparing the two sets of
eigenvalues, these unwanted eigenvalues may be identified and deleted. All but one
of the multiple copies of W ’s eigenvalues can, of course, be trivially removed from
the spectrum of T. For the case where the eigenvalues of W are non-degenerate, the
resulting spectrum is isomorphic to W’s. If some of the eigenvalues of W are
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degenerate, the method outlined here for finding the observables remains valid as
shown in ref. 20.

The eigenvalues of T and T’ are computed via the bisection method [21], which
utilizes the Sturm-sequencing property of symmetric, tridiagonal matrices. It offers
two significant computational advantages over alternative procedures. First, and
most important, the procedure is readily vectorized, and consequently dramatic
reductions in CPU time are realized over other tridiagonal eigenvalue routines (e.g.,
the QL transformation [22]), which are highly recursive and hence non-vectorizable.
Prior to our adoption of the bisection method, the evaluation of the eigenvalues of T
and T’ dominated the computation time almost completely, whereas the portion of
the program presently requires only 30-40% of the total time. A second advantage
offered by the method is the selectivity in the accuracy to which different eigenval-
ues are found. As noted previously, only the algebraically smallest eigenvalues
contribute significantly to the final result at intermediate to long times; as seen in
eqn. (A4) below, the remaining eigenvalues are needed solely to find the residues of
the smallest eigenvalues. We have performed numerical experiments which demon-
strate that the residues of the small eigenvalues depend only weakly on those
eigenvalues far removed. Consequently, the error tolerance to which the majority of
the eigenvalues are found can be set to a much larger value than that required for
the smaller eigenvalues, thereby permitting a further reduction in the CPU time.

The final step is the calculation of the residues R’} using the RRGM. Hence
after the spurious eigenvalues and multiple copies have been purged from the
spectra of T and T’, the following formula is utilized to find the residue of the kth
eigenvalue:

N-1
1—[ (Xi - >‘k)

ky _ i=1
RY) = (A4)

H ( A= >‘k)
%k
where the A, and X, are the eigenvalues of T and T, respectively.

The derivation of this equation is based on elementary linear algebra and the
theory of Green’s functions and may be found in ref. 14. We note that the ratios
(N; = AR)/(A;—A,) are typically of order unity, and consequently there is no
problem in implementing eqn. (A4) numerically. Also, it is clear from the expression
that each residue depends on the global distribution of eigenvalues, so that the full
spectra of T and T’ must be found even though most modes contribute negligibly
to the solution at long times. Once the eigenvalues and residues have been found,
G,,(?) is easily assembled using eqn. (A2).

APPENDIX B. APPLICATION OF THE LANCZOS ALGORITHM AND RRGM TO NON-UNI-
FORM GRIDS

In digital simulations of electrochemical systems, non-uniform grids are often
employed in finite difference schemes in order to reduce the computation times. For
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instance, in ref. 16 an exponential space grid was utilized to obtain the long-time,
quasi-steady-state behavior of a patterned array of electrodes. One important
consequence of this strategy is that the transfer matrix is no longer symmetric, as is
the case for uniform grids. Therefore since the formulation of the Lanczos algorithm
used here is only valid for symmetric matrices, the methods described in Sect. (II)
and Appendix A cannot be applied directly to W. This problem can be surmounted,
however, if W can be factored into a product of the form

wW=U"'SU (B1)

where the matrix § is symmetric and the format of U is arbitrary. Given this
decomposition, the Green’s function can be recast as

G(t) = exp[ Wt]

=exp[U™'SU!]

=I+ U 'SU:+ (3)(U'SU)U'SU)t* + ...

=UI1+S8t+(3)S%*+...|U

= U exp[ St|U (B2)
By inserting the last expression for G(¢) into eqn. (19), G,,(¢) becomes
G, (t) =e" - exp[ Wt]c(0)

=eT- U™ exp[St]Uc(0)

=e'" - exp[St]e’ (0) (B3)

with ¢’(0) = Uc(0), and e’=U"'e. The procedure is now applied to this last
expression for G,;(¢) with S replacing W, e’ replacing e, and ¢’(0) replacing ¢(0).
The factorization thus enables the symmetry of W to be “transferred” to the initial
concentration vector and the flux vector, so that the non-uniform space discreti-
zation falls within the domain of the Lanczos procedure.

To illustrate how the transformation in eqn. (B1) can be effected, we consider in
detail the exponential grid proposed in ref. 16 and used here in the modeling of a
single microband electrode. Figure 6 is a diagram of the space grid employed there,
and Table 2 lists the associated simulation diffusion constants. As seen in the figure,
there are N\, partitions in the N-direction, and J,, in the J-direction for a total of
NuJy cells; the resulting cells are labeled as indicated. The asymmetry of the
transfer matrix’s elements is evident from Table 2: the diffusion constants for a
given cell are functions of the cell’s position, so that the transfer rates into and out
of a volume element across the same boundary are unequal. For example, the
diffusion coefficient for transfer from cell Ny, + 2 to cell 2Ny, + 20W Ionm+2.Nm+2)
is Dy(J =2) =Dy exp[—2B(5/4)], whereas for transfer in the opposite direction
(IW INm+228m+2), the diffusion coefficient is D;(J = 3) = D\, exp[—28(7/4)].
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TABLE 2

Simulation diffusion constants *°

Limit Inner boundary Outer boundary

J=1 D;(J) = Dy sinh(B/2) cosech(B/4) exp(B/4) D,(J) =Dy exp[—2B8{J —(3/H}]
J>2 D;(J) = Dy exp[—2B{J —(5/9)}] Do(J) = Dy exp[—2B{J —(3/4)}]

N<N1-1 D(N)=Dyexp[-2B{N1—=N—(3/4)}]  D,(N)= Dy exp[—2B{N1—N —(5/4)}]
N=N1-1 D{(N)=Dyexp[-2B{N1-N—(3/4)}] D, (N)=Dy :
N1<N<N4 D(N)=Dy D,(N) =Dy,

N=N4+1 Dy(N)=Dy Dy(N) =Dy exp[—2B{ N — N4—(3/4)}]
N>N4+1 Di(N)=Dyexp[—2B{N—N4—(5/4)})]  Do(N)= Dy exp[—2B{ N-N4—(3/4)}]

aDu=(DA1)/(Ax?).
> N1 and N4 are the labels of the first and last cells of the region adjacent to the electrode; in Fig. 7,
N4=N1+2.

We begin the factorization by separating W into the sum of the diagonal matrix
D containing the diagonal elements of W and the matrix O of the off-diagonal
entries,

W=D+0 (B4)

The motivation for this separation is that only the off-diagonal elements of W are
modified in the transformation from W to § since, as shown below, the matrix U
can be chosen to be diagonal, and hence the diagonal elements of W and S are
identical.

Given the labeling scheme in Fig. 6, the matrix O can be viewed as a Jy X Jy,
tridiagonal supermatrix with each block element of dimension Ny X Ny,:

N D,(J=1) 0
D,(J=2) N D,(J=2) 0
o= 0 D;(J=3) N D(J=3) 0

D(J=h) N
(85)

The matrices D;(J) and D, (J) are diagonal with all elements equal to D;(J) or
D,(J). The matrix N is itself tridiagonal with the superdiagonal containing the
entries [NV]y,,1 =D,(N=k) and the subdiagonal consisting of the elements
[Nlk+1x= Di(N = k + 1); from eqn. (B4) the diagonal elements of N are zero.

The factorization of O is accomplished in two independent steps: in the first
step, N is decomposed into the form of eqn. (B1); we then superimpose on this the
factorization of the J-blocks. This approach is feasible because the diffusion
constants for a given boundary depend on only one of the two coordinates (N or J).
Moreover, the procedure is completely general and can be readily extended to
three-dimensional problems and other geometries for which the same condition
holds.
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The decomposition of N is found by assuming N = Uy 'SyUy, where Uy is
diagonal and S, is symmetric and tridiagonal, and then solving recursively the
resulting equations beginning with the cells next to the electrodes. The solution is

exp[(g){Nl—l—k}] k<N1-1
[Un]ie=1{1 N1<k< N4 (B6)
exp[(g){k—N4—l}] k>N4+1

Dy exp[—2B{N1—-k—(3/2)})] k<N1
[sN]k,k+1= Dy Nl1-1<k<N4 (B7)
Dy exp[—2B{k—N4—(1/2)}] k=N4+1
The factorization of the J-blocks proceeds in an analogous fashion. Thus, writing
O’ =U; 'S,U; where O'=0—N, U, is a Jy XJy block diagonal matrix (each

block Ny X Ny), and S is a Jy X Jy, symmetric block tridiagonal matrix, then it is
straightforward to show that the ith block of U, is

[U];=exp[(B/2)(i - 1)] (B8)

and the ith superdiagonal block of S, is

[SJ]i,i+1=exP[_2:B{i_(1/2)}] (B9)
The final decomposition is found combining the two factorizations:

0=U'SU

with

U= UUy (B10)

and

S=85,+Sy

Here U; and §; are as defined above, and Uy and Sy are the NyJy X NyJy
diagonal block matrices with each block equal to Uy and S, respectively. U is
clearly diagonal, and § is symmetric, so that W has been factored into the form
specified in eqn. (B1), i.e.,
W=D+0=D+U'SU

=U'[D+S|U (B11)
with D + § symmetric.
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