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Scanning Electrochemical Microscopy. Theory of the 
Feedback Mode 

Juhyoun Kwak and Allen J. Bard* 
Department of Chemistry, The  University of Texas,  Austin, Texas 78712 

The steady-state current that flows between the scanning tlp 
(a disk ultramicroelectrode imbedded in an Insulating sheath) 
and a planar sample substrate in a scannlng electrochemical 
microscope (SECM) operating in the feedback mode is cal- 
culated by the finite element method with an exponentlaily 
expandlng grld, for both conductlve and Insulating samples. 
For conductlve substrates the tip current, representing, for 
example, the oxidatkn reactlon of R to 0, is enhanced by flow 
of R generated at the substrate to the tlp and is a functlon of 
tiphubstrate distance, d ,  but not the radius of the lnsuiatlng 
sheath. For insulating substrates, the tlp current Is decreased 
by blockage of the diffusion of R to the tip by the substrate 
and depends upon d and the Insulating sheath radius. The 
theoretical results are compared to experimental studies. 

INTRODUCTION 
A previous paper from our group described the principles 

of the scanning electrochemical microscope (SECM) and its 
operation in the feedback mode (1).  In the SECM faradaic 
currents at an ultramicroelectrode tip (diameter ca. microm- 
eters) are measured as the tip is moved near the surface of 
a sample immersed in an electrolyte solution. The tip current, 
iT,  is controlled by electrochemical reactions at  the tip and 
sample and is a function of the tip/sample distance, d, and 
the conductivity and chemical nature of the sample. The 
measurement of iT can thus provide information about sample 
topography (variable resolution depending on the size of tip 
electrode) and its electrical and chemical properties. In our 
earlier paper ( I )  a model for calculating iT for a conductive 
substrate was given based on a thin layer cell approximation 
combined with the steady-state current that flows to a mi- 
crodisk electrode. In this paper we develop a more rigorous 
steady-state model for both conductive and insulating sub- 
strates and carry out simulations that provide working curves 
of iT as a function of d and tip radius. 

The basic principles of operation of the SECM are given 
in Figure 1. For example, a species 0 in solution at  a con- 
centration Co* and with a diffusion coefficient, Do, is reduced 
to  species R in an n-electron reaction at  the tip. The current 
a t  the tip is a function of the flux of 0 to the tip. When the 
tip is far from any surface (Figure lA),  the steady-state current 

to  the imbedded disk is given by the well-known expression 
(2, 3) 

i = 4nFDoCO*a 

When the tip is near a conductive substrate (Figure lB), which 
is a t  a potential where R is oxidized to 0, the additional flux 
of 0 to the tip (termed the feedback current) (1) will cause 
iT to be larger than that given by eq 1. On the other hand, 
when the tip is near an insulating substrate (Figure IC), 
diffusion of 0 to the tip is partially blocked and i~ is smaller 
than that in eq 1. A calculation of the magnitude of iT thus 
depends upon solving the equations for steady-state diffusion 
of 0 and R between tip and substrate. The rather complex 
disk/plane geometry involved prevents the derivation of a 
closed-form solution, and digital simulations were used to 
obtain concentration profiles and working curves of iT vs d. 
Instead of the well-known finite difference method (FDM) 
often used in electrochemical diffusion calculations (4 ,5) ,  the 
finite element method (FEM), which is widely employed 
simulation approach in engineering studies (6, 7), was used. 
To solve the two-dimensional (axisymmetric) steady-state 
electrochemical diffusion problem, it was convenient to use 
the FEM source programs for axisymmetric steady-state heat 
conduction, which are of the same mathematical form as those 
for mass transfer, and are described in detail in textbooks in 
engineering science (6, 7). The well-known exponentially 
expanding grid method (8-10) was used to generate a rea- 
sonable two-dimensional grid (see Appendix) according to the 
principle that the regions of steeper concentration gradient 
region require more grid points than the other regions. The 
application of the FEM with two-dimensional expanding grid 
method (8-10) allowed calculations to be carried out with 
practical computer memories and reasonable execution times. 
The simulated currents were compared to experimental ones 
with both conductive and insulating substrates and the 
agreement is shown to be satisfactory. This demonstrates that 
measurement of iT a t  a tip of known radius can be used to 
determine the tip/substrate distance, d, and that scans of the 
tip over the substrate surface can provide absolute topographic 
information. 

EXPERIMENTAL SECTION 
The apparatus and experimental techniques have been de- 

scribed previously (I). All experiments here utilized a 5 pm radius 
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Figure 2. Disk electrode and planar substrate in axisymmetric system. 

Pt disk imbedded in glass as a tip. Solutions were 2.5 mM 
ferrocene in acetonitrile containing 25 mM tetra-n-butyl- 
ammonium fluoroborate (TBABF4). 

FORMULATION OF MODEL 
We consider the oxidation reaction R - ne- - 0 at the tip 

and calculate the steady-state concentrations of 0 and R, 
Co(r,z)  and CR(r,z) ,  respectively, for the axisymmetric ar- 
rangement shown in Figure 2. The electrochemical mass 
transfer problem can be represented by the second-order 
partial differential diffusion equations 

A list of all symbols is given in Table I. The boundary 
conditions that apply to this problem, with the assumption 
that rglass >> a (where rglaas is the radius of the glass sheath 

Table I 

usual 
symbol dimensions meaning 

A, nA 
cm, wn 
cm2/s 

M, mM 
cm2/s 

M, mM 
cm, wn 
cm, wn 

M, mM 

M, mM 

cm, wn 
cm, w-n 

none 

C 
J mol-' K-l 
K 

Ed V 
E"' V 
E, V 
Eeq V 
i none 

j '  none 

FCO("(R,Z) none 

FCO(R,Z) none 

FCO(e)(Rj,Zj) none 

FCO(Rf,Zf) none 

FCR(e)(R,Z) none 

FCR(R,Z) none 

FCRle'(Rj,Zj) none 

FCR(Rf,Zf) none 

N,(e)(R,Z) none 

N,.(R,Z) none 

current at the tip electrode 
distance between tip and substrate 
diffusion coefficient of oxidized 

bulk concentration of oxidized species 
diffusion coefficient of reduced 

bulk concentration of reduced species 
normal distance from disk electrode 
radial distance from the center of 

disk electrode 
steady-state concentration of oxidized 

species at location r,z 
steady-state concentration of reduced 

species at location r,z 
radius of disk electrode 
radius of the glass sheath surrounding 

the disk electrode 
electrons per molecule oxidized and 

reduced 
faradaic constant 
gas constant 
temperature 
potential of disk electrode 
formal potential of a redox couple 
potential of a conductive substrate 
equilibrium potential of the solution 
nodal point index of element domain 

nodal point index of global space 

functional form of the fractional 

species 

species 

(e) 

domain 

concentration of oxidized species in 
element domain (e) 

concentration of oxidized species in 
global space domain 

species at node j of element domain 

functional form of the fractional 

fractional concentration of oxidized 

(e) 
fractional concentration of oxidized 

functional form of the fractional 
species at global node j '  

concentration of reduced species in 
element domain (e) 

concentration of reduced species in 
global space domain 

species at node j of element domain 
(e) 

fractional concentration of reduced 
species at global node j '  

interpolation polynomials of element 
(e) (nonzero only inside element 
( e ) ,  1 at node j and 0 at other 
nodes) 

global interpolation polynomials 
(nonzero only adjacent elements 
domain, 1 at node j' and 0 at other 
adiacent nodes) 

functional form of the fractional 

fractional concentration of reduced 

surrounding the disk electrode), are as follows: For the disk 
electrode (2 = 0 and 0 5 r 5 a) 

Co(r,O)/CR(r,O) = exp((nF/RT)(Ed - ED')) 
Do[dCo(r,Z)/az]z=(~ + &[dCR(r,Z)/dz]z=, = 0 

(4) 

(5) 

where E d  is the potential applied to the disk electrode. At 
the glass surrounding the disk (2 = 0 and a 5 r 5 rglmJ 

(6) [ac,(r ,z) /az]  = [dC,(r,z)/dz] = 0 

The semiinfinite conditions ( r  1 rglass for 0 < z < d )  are 
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FCR(R,L) = 1 (2 = L and R L 0) 

or 
dFCR(R,Z)/dZ = 0 (2 = L and R I 0) 

(insulating substrate) (26) 

The boundary condition in eq 24 implies that for both types 
of substrate, the supply of R from the bulk is high beyond 
RG; the region is not blocked by the glass sheath around the 
tip even when the tip is close to the sample so that the con- 
centration of R essentially remains at the bulk concentration. 

The above set of equations are solved by the finite element 
method. I t  is beyond the scope of this paper to give a detailed 
treatment of the FEM and the programming procedures em- 
ployed; a complete discussion can be found in ref 6 and 7. An 
outline of the approach and a description of the two-dimen- 
sional exponentially expanding grid method are given in the 
Appendix. 

RESULTS AND DISCUSSION 
Program Check and Error Analysis. To check the al- 

gorithms used, as described in the Appendix, and gauge the 
effect of grid size on the accuracy of the solutions obtained, 
the concentration profiles and current a t  the disk electrode 
were computed under semiinfinite boundary conditions, Le., 
RG = 1000 and L = 1000, when the tip electrode is very far 
from the substrate. This problem has already been treated 
by Newman (2) and Saito (3)  and yields the steady-state 
current given by eq 1. The resulting concentration profiles 
are shown in Figure 3A. The errors in the calculated current 
as a function of choice of grid size parameters DREL, DRGL, 
and DZEL (see Appendix) are shown in Figure 4. This error 
is less than 1% for the following range of grid parameters: 
0.0001 < DREL < 0.001; 0.0001 < DRGL < 0.001; 0.0005 < 
DZEL < 0.002. The accuracy of calculations made with 
smaller values of L (i.e., with the tip nearer the substrate) 
should be at  least as good, because the exponential grid factor, 
b,  employed is smaller than that used for the semiinfinite 
simulation and the number of grid elements employed is the 
same. Thus, parameters within these ranges were used for 
all simulations with smaller L values. We should emphasize 
the utility of using the exponentially expanding grid approach 
in being able to carry out this simulation. If a linear grid with 
a spacing of 0.01 would be employed, for example, then a few 
hundred grid elements in both the Z and R directions would 
be needed to obtain a 1 % accuracy. An unreasonably large 
memory would be needed for the simulation. For example, 
a 1000 x 1000 grid simulation by the FEM would require the 
solution of a lo6 X lo6 square matrix and use about 16 Gbytes 
of memory! 

Conductive Substrates. Simulations with the tip ap- 
proaching a planar substrate were carried out for different 
values of tip/substrate distance (L)  and size of the glass sheath 
surrounding the tip (RG). Typical concentration profiles for 
L = d / a  = 1 are shown in Figure 3B. The increase in con- 
centration of R in the vicinity of the electrode caused by the 
feedback effect compared to that under semiinfinite conditions 
(Figure 3A) is clearly shown. The current at the disk electrode 
is obtained by summation of the fluxes of R, proportional to 
the concentration gradients a t  z = 0 for 0 I r 5 a. Values 
of the tip current, normalized to that a t  long distance, are 
given in Figure 5 and Table 11. The tip current with a 
conductive substrate is the same for RG = 100 or 1000 and 
thus should not strongly depend on the size of the glass sheath 
surrounding the disk. An approximate (within 2%) analytical 
equation that fits the simulated results is 

(conductive substrate) (25) 
Co(r,z) = Co* (7) 

CR(r,Z) = cR* (8) 

(9) 

(10) 

We choose the above approximate semiinfinite boundary 
conditions, eq 7-10, for simplicity; rigorous consideration of 
the diffusion at r > rgh may be required, especially when rgh 
is small, for more accurate simulations. At the planar sample 
(substrate) surface ( z  = d and r I 0) the boundary conditions 
depend upon the conductivity of the substrate. For a con- 
ductive substrate 

[dCo(r ,z) /dz]  = [dcR(r , z ) /dz]  = 0 

[dCo(r ,z) /dr]  = [dCR(r , z ) /dr]  = 0 

cO(r ,d) /cR(r ,d)  = expl(nF/RT)(E, - EO’)) (11) 

Do[dCo(r,z)/dz]z=d + DR[dCR(r,%)/dz],=d = 0 (12) 

while for an insulating substrate 

[dcO(r,z)/dz],=d = [dcR(r,z)/dz]z=d = 0 (13) 

The potential in the substrate boundary condition, eq 11, 
will frequently be the equilibrium potential of the solution, 
i.e., E, = E,,, where 

E,, = Eo’ + ( R T / n F )  In (Co*/CR*) (14) 

since most of the conductive substrate, which is assumed to 
be large compared to the tip diameter, will be in contact with 
bulk solution. This is very convenient experimentally, because 
in many cases the substrate will be too small or weak to allow 
the attachment of a suitable electrical contact. 

T o  our knowledge, this set of equations cannot be solved 
analytically. Before a digital simulation was carried out, they 
were cast in a dimensionless form by making the following 
substitutions: 

R = r / a  (15) 

Z = z / a  (16) 

L = d / a  (17) 

FCO(R,Z) = C o ( r / a , z / a ) / C R *  (18) 
FCR(R,Z) = CR(r /a , z /a) /CR* 

RG = rglass/a (19) 

For simplicity, we assumed that DO = DR = D and that the 
bulk solution contained only species R (i.e., Co* = 0 and E,, 
<< 0). We also treat the case where Ed is sufficiently positive 
that R is oxidized to 0 at the disk at a mass transfer controlled 
rate, Le., CR(r,O) = 0 for 0 I r 5 a. Under these conditions 

(20) 

and only the differential equation for R needs to be simulated, 
with Co(r,z) then immediately obtainable from eq 20. The 
simulation must then solve the following set of dimensionless 
equations: 

d2FCR(R,Z) /dR2 + (1 /R)(dFCR(R,Z)/dR) + 

FCR(R,O) = 0 (2 = 0 and  0 I R I 1) 

dFCR(R,Z)/dZ = 0 

FCR(R,Z) = 1 

and either 

Co(r,z) = CR* - CR(r,z) 

d2FCR(R,Z)/dz2 = 0 (21) 

(disk electrode surface) (22) 

(glass sheath) (23) 

(semiinfinite condition) (24) 

(2 = 0 and  1 < R 5 RG) 

(0 < Z < L and R I RG) 
(iT/im) = ( ~ / 4 ) ( ~ / d )  + 0.901 + 

0.099 exp[-O.l6(a/d)l - 0.29 exp[-0.39(d/a)] (27) 
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Flgure 3. Computed concentration profiles at different substrates: (A) 
semiinfinlte boundary condition (far from substrate), (6) conductive 
substrate at L = d / a  = 1 (calculation conditions: NREL = NZEL = 
18, NRGL = NZSUB = 19, DREL = DRGL = DZEL = DZSUB = 0.005, 
L'= L / 2 ,  RG = lOOO), (C) insulating substrate at L = 1 (same cal- 
culation conditions as in 6). 

where i, is the tip current when d - m. In our previous paper 
(I) we pointed out that the feedback effect in the limit of small 
d should approach that of a thin-layer cell, where the current 
is given by nFADRCR*/d. This proportionality of iT with l / d  
is shown in Figure 6. Also given in Figure 6 are experimental 
points for the oxidation of ferrocene (Fc) to Fc+ a t  a 5 pm 
radius tip electrode above a Pt substrate immersed in 
MeCNl2.5 mM TBABF4. The agreement between theory and 
experiment is excellent. Ideally, because the normalized tip 
current can be directly related to distance through the results 
in Table 11, the SECM should allow absolute determinations 
of surface topography without calibration of the piezoelectric 
drive, when the disk radius is known. Deviations between 
actual and theoretical currents are expected, however, if the 
tip geometry deviates from the ideal disk-in-insulator ar- 
rangement assumed in the simulations. 

Insulating Substrates. The calculated concentration 
profiles for the tip near the surface of an insulating substrate 
(with L = d /a  = 1) are given in Figure 3C. Here the con- 
centrations of R near the electrode surface are much smaller 

-4- 

-6- 

-8 
.0001 .001 .01 

I 

DZEL 
Figure 4. Error analysis for the semiinfinite boundary condition for 
different DZEL and DREL (calculation conditions: NZEL = 34, NZSUB 
= 3, NREL = 18, NRGL = 19, DZSUB = 1, DREL = DRGL): 8. DREL 
= 0.0001; e, DREL = 0.0002; 0, DREL = 0.0005; 0, DREL = 
0.0010; W, DREL = 0.0020; 0, DREL = 0.0050; +, DREL = 0.0100. 

0 
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Figure 5. Normalized tip currents as functions of the substrate material 
and the inverse of the normalized tiphubstrate distance. Calculation 
conditions were same as in Figure 38 except for the RG and L values: 
W, RG = 1000 or 100 and the conductive substrate; El, RG = 10 and 
the insulating substrate; 0, RG = 100 and the insulating substrate; 0, 
RG = 1000 and the insulating substrate. 
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Flgure 6. A comparison between theoretical and experimental results 
for a conductive substrate: curve A, thin layer theory; curve B, cal- 
culated, as in Figure 5; W, experimental data (see text). 

than those at long distance (Figure 3A) because of the blocking 
effect of the substrate. The calculated normalized tip current 
as a function of distance is shown in Figure 5 and Table 11. 
As opposed to the results found with a conductive substrate, 
the current in this case depends upon the size of the glass 
sheath surrounding the tip (RG = 10,100,1ooO) and decreases 
as the sheath radius increases. This can be understood in 
terms of the increase in the blockage of diffusion to the disk 
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m 

Table 11. Normalized Tip Currents as Functions of the 
Substrate Material and the Tip/Substrate Distancea 

I = [(material, RG, L )  = iT/nFDRCR*a 

L 

log L 

2.0 
1.9 
1.8 
1.7 
1.6 
1.5 
1.4 
1.3 
1.2 
1.1 
1.0 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0.0 

-0.1 
-0.2 
-0.3 
-0.4 
-0.5 
-0.6 
-0.7 
-0.8 
-0.9 
-1.0 
-1.1 
-1.2 
-1.3 
-1.4 
-1.5 
-1.6 
-1.7 
-1.8 
-1.9 
-2.0 

conductive substrate insulating substrate 
RG = 100 RG = 1000 RG = 10 RG = 100 RG = 1000 

1.0158 
1.0164 
1.0173 
1.0187 
1.0205 
1.0229 
1.0260 
1.0301 
1.0355 
1.0425 
1.0515 
1.0631 
1.0783 
1.0980 
1.1237 
1.1576 
1.2022 
1.2614 
1.3401 
1.4445 
1.5825 
1.7635 
1.9989 
2.3027 
2.6918 
3.1877 
3.8167 
4.6142 
5.6204 
6.8918 
8.4959 

10.5217 
13.0648 
16.2817 
20.3250 
25.4310 
31.8514 
39.8134 
50.2376 
62.8570 
79.0570 

1.0105 
1.0106 
1.0111 
1.0122 
1.0140 
1.0164 
1.0196 
1.0237 
1.0291 
1.0361 
1.0451 
1.0569 
1.0721 
1.0919 
1.1178 
1.1518 
1.1967 
1.2561 
1.3351 
1.4398 
1.5780 
1.7594 
1.9950 
2.2990 
2.6884 
3.1845 
3.8137 
4.6113 
5.6177 
6.8891 
8.4933 

10.5193 
13.0624 
16.2793 
20.3228 
25.4288 
31.8493 
39.8114 
50.2357 
62.8551 
79.0551 

1.0563 
1.0558 
1.0553 
1.0549 
1.0544 
1.0540 
1.0535 
1.0530 
1.0523 
1.0509 
1.0479 
1.0412 
1.0285 
1.0073 
0.9750 
0.9296 
0.8700 
0.7970 
0.7134 
0.6238 
0.5337 
0.4482 
0.3709 
0.3034 
0.2461 
0.1984 
0.1593 
0.1274 
0.1017 
0.0809 
0.0643 
0.0509 
0.0403 
0.0318 
0.0251 
0.0198 
0.0156 
0.0123 
0.0096 
0.0076 
0.0060 

1.0098 
1.0088 
1.0071 
1.0045 
1.0007 
0.9951 
0.9872 
0.9760 
0.9607 
0.9402 
0.9132 
0.8785 
0.8353 
0.7832 
0.7224 
0.6545 
0.5816 
0.5068 
0.4335 
0.3645 
0.3021 
0.2474 
0.2009 
0.1619 
0.1299 
0.1039 
0.0829 
0.0660 
0.0524 
0.0416 
0.0329 
0.0260 
0.0206 
0.0162 
0.0128 
0.0101 
0.0079 
0.0062 
0.0049 
0.0039 
0.0031 

1.0018 
0.9971 
0.9909 
0.9828 
0.9722 
0.9584 
0.9407 
0.9181 
0.8899 
0.8552 
0.8132 
0.7639 
0.7075 
0.6450 
0.5781 
0.5092 
0.4407 
0.3751 
0.3145 
0.2602 
0.2129 
0.1728 
0.1393 
0.1117 
0.0893 
0.0712 
0.0567 
0.0450 
0.0357 
0.0283 
0.0224 
0.0177 
0.0140 
0.0110 
0.0087 
0.0068 
0.0054 
0.0042 
0.0033 
0.0026 
0.0021 

(I Calculation conditions were the same as in Figure 3B except for 
the RG and L values. L = d / a .  

electrode through the thin gap between the insulating sheath 
and the insulating substrate as the length of this region in- 
creases. Thus, a determination of the distance and topography 
of an insulating substrate requires knowledge of both disk and 
insulator radii. A comparison of experimental and simuktion 
results is given in Figure 7 .  In this experiment the solution 
and tip were the same as that with a conductive substrate and 
a silicon wafer was used as the insulating substrate. In this 
case while the expected trend in normalized current with 
distance is obtained, the currents are larger than expected. 
This reflects the fact that the tip did not have the ideal disk 
geometry as defined in simulation. The experimental tips used 
here were produced by sealing Pt wire in glass and then ta- 
pering the flat glass section around the tip to a conical shape 
by polishing with emery paper to reduce the size of the sheath 
to 10-50 times the disk radius and then with diamond paste. 
This is necessary to reduce the possibility of the overhanging 
glass insulator contacting the substrate when the tip ap- 
proaches the sample. However, this polishing procedure can 
taper back the sheath somewhat and perhaps gives a slight 
hemispherical or conical shape to the disk itself. This would 
cause a greater flux to the disk surface and greater currents 
than those predicted by the ideal model simulations. Gen- 

101 1 

1 2 
P= 
u, 
C . 

“.b 1 . 1  1 10 100 
ald 

Flgure 7. A comparison between theoretical and experimental results 
for an insulating substrate: B, experimental data (see text); BI, RG = 
10 and the insulating substrate; 8, RG = 100 and the insulating sub- 
strate; 0, RG = 1000 and the insulating substrate. 

erally technical difficulties prevent tip preparation with 
mathematically definable geometry and micrometer precision, 
Le., with well-defined glass sheath radii. We usually use a 
disk-in-glass configuration with as small an effective rgl, as 
possible to reduce the possibility of the overhanging glass 
insulator contacting the substrate when the tip approaches 
the sample. Note that, even with the best data shown in 
Figure 7 ,  three deviating experimental data points for large 
a / d  values (Le., a / d  > 5 or d < 1 pm) probably reflect the glass 
sheath touching the substrate. 

In the case of insulating substrates, more rigorous boundary 
conditions reflecting the nonideal disk-in-glass geometry (Le., 
a three-dimensional diffusion problem) as well as modification 
of the semiinfinite boundary conditions (eq 7-10) could be 
considered for a better agreement between experimental and 
theoretical results. Alternatively a technique that allows 
fabrication of tips with a geometry close to that of the model 
might be developed. Both of these approaches appear quite 
difficult, however. 

CONCLUSIONS 
The tip current for the SECM operating in the feedback 

mode and utilizing a disk-shaped electrode over a planar 
substrate has been calculated for both conductive and insu- 
lating samples by solving the steady-state diffusion equations 
by the FEM with an exponentially expanding grid. The 
theoretical curves for the normalized tip current vs tip/sub- 
strate distance are independent of the radius of the insulating 
glass sheath surrounding the disk and can be used to find the 
absolute tip/substrate distance. With an insulating sample, 
the results do depend upon the glass sheath radius and an 
empirical calibration curve is required for a given electrode 
to obtain the distance from the measured tip current. Al- 
though the theory developed here strictly applies only to a 
steady-state situation, i t  will be applicable to measurement 
where the tip is scanned over the sample in the x-y direction, 
as long as the scanning speed is slow compared to the time 
needed for the ultramicroelectrode tip to attain steady state. 
How slow a scanning speed is needed depends upon the size 
of the tip electrode and d,  because a smaller disk electrode 
and one held very close to the substrate will reach steady state 
more rapidly than a larger disk at  a long distance (11-13).  
Practically, the maximum speed for a given tip can be de- 
termined by scanning over the same sample with increasing 
speeds until a substantial difference is detected in the re- 
sponse. Note also that the above simulations apply to an 
essentially planar substrate, and that deviations from theo- 
retical behavior could arise with substrate geometries that are 
substantially nonplanar (e.g., with sharp discontinuities or 
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l - j & z z  -___ 
space domain to obtain (FCRJ, where 

FCR(R13,Zir) 
FCR(Ry,Zy) 

lFCR1 = { FCR(Ry,Zy) ::: 1 (A6) 

FCR( R,,,,Z,,,) 
and the points Rf,Zf are the nonduplicate points on the 
two-dimensional exponential mesh which is described later. 
Therefore, the global matrix equation is similar in form to eq 
A3, i.e. 

FCR(R,Z) = [N)(FCR] (A71 
where 

= INit(R,Z ),N24R7Z ),Ny(R,Z ) , . . . ,NdR,z 1) (A81 
The resulting functions N&Z) (j = 1, 2, ..., n and n is the 
total number of grid points) will be the specific summation 
of element interpolation polynomials N,.'")(R,Z) that depend 
on the global grid and element numbering. These global 
interpolation polynomials will be 1 at  the global node, j ' ,  and 
0 at the other nodes and also 0 in the element domains which 
does not include the nodal point, j ' .  

So far, only the approximate field variable functions to be 
solved have been developed. Introducing the Bubnov-Gal- 
erkin method, where the weighing functions are chosen to be 
same as the approximating functions (NJR,Z)) ,  the equation 
to be solved is formulated, from eq 21 

L~YG J::[ {NIT( ~ ' F z ~ J )  + 

e lements  a n d  
their  nodes 

L ( d / a )  

UB 

0 

Figure 8. The two-dimensional exponential grids employed in the 
simulation where L = 6, L' = 3, RG = 3, NREL = NRGL = NZEL = 
NZSUB = 7, DREL = DRGL = DZEL = DZSUB = 0.1 and the element 
node numbering system. 

hemispherical structures that are of the order of the tip ra- 
dius). 

APPENDIX 
The dimensionless equations, eq 21-24 with either boundary 

condition, eq 25 or 26, were solved by the FEM. In this 
method the R, 2 space is divided into a set of elements, each 
denoted by the superscript (e), as shown in Figure 8. The 
methods and notation generally follow those in references 6 
and I .  

The field variable (FCR(e)(R,Z)) in one element (e) of the 
space domain (a rectangle in the R,Z plane) is approximated 
by a set of four linear interpolation polynomials Nj(e) (bilinear 
Lagrange polynomials) which is 1 at  one element node or one 
corner point, j ,  of the rectangle and 0 at  the other nodes and 
also 0 outside the element domain, i.e. 

4 

j=l  
FCR(e)(R,Z) cz CNj(e)(R,Z)  FCR(e)(Rj,Zj) (Al )  

where (see Figure 8 for coordinate index) 

Ni(e)(R,Z) = 

or using vector notation 

FCR(e)(R,Z) = (N)(e){FCR)(e) (A31 

where 

{ N)(") = fN,(e)( R ,Z ) ,N2(e) (R ,Z ) ,N3(e) (R ,Z ) ,Nd(e) (R ,Z ) ) 
(A4) 

I FCR(")(R,,Z,) I 
The above element equations can be summed over all the 

- 
1 dFCR(R,Z) d2FCR(R,Z) + ( E )  dR az2 

where (NJT is the transpose vector of IN). A combination of 
eq AI and A9 yields the integro-differential matrix equation 

y)2 i rdRdZ]{FCR)  az2 = 10) (A10) 

Equation A10 is the matrix representation of the simultaneous 
linear equations, where the matrix elements do not contain 
any unknown variables, but the integration causes some 
complexity. However, some of the values of FCR(Rf,Zf) are 
already known from the boundary conditions at  the boundary 
surfaces. Rearrangement of the eq A10 to include these 
boundary conditions results in nonsingular matrix equations 
with a nonzero vector as the right-hand side of eq A10. This 
procedure is explained on page 51 in the ref 6. After this 
rearrangement, the square matrix (n by n, where n is the total 
number of grid points) can be recognized as a band matrix 
the size of which is dependent on the total number of R 
directional grids ( n ~ )  or that of 2 directional grids (nZ),  i.e., 
nR + 2 or nZ + 2. The rearranged form of eq A10 is evaluated 
on the computer, by numerical integration and inversion of 
the band matrix ( n  by nR + 2 or n by nZ + 2). For the 
numerical integration, the Gauss-Legendre quadrature me- 
thod (6) was used. 

To specify the global nodal points that are spread on the 
R,Z plane, the exponentially expanding grid method (8-10) 
was used. This method is critical to solution of this problem, 
because practically the size of computer memory is finite and 
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a relatively large memory is essential for the inversion of the 
matrix. Four directions of exponentially expanding grids 
(Figure 8) were used to  increase the accuracy. From the 
principle that  the region of steeper concentration gradients 
has to provide more grids than the other regions, four di- 
rectional expanding grids were selected as follows: f i t ,  NZEL 
grids from 2 = 0 to 2 = L' starting with a DZEL grid size, 
where 0 < L'  < L; second, NZSUB grids from 2 = L to 2 = 
L'starting with a DZSUB grid size; third, NREL grids from 
R = 1 to R = 0 starting with a DREL grid size; fourth, NRGL 
grids from R = 1 to R = RG starting with a DRGL grid size. 

The above formulation, including automatic two-dimen- 
sional exponential grid generation, was coded in FORTRAN 
and executed on either a CDC 6000 dual cyber computer 
(Control Data Corp.) or a Macintosh I1 (Apple Computer, Inc). 
T o  obtain one data point in Figure 5, took 35 s on the CDC 
6000 and 390 s on the Macintosh 11. The needed number of 
bytes of memory largely depended on the size of band matrix 
and inverted band matrix, i.e., the number of memory bytes 
= 8.2.n.(nR + 2) or 8.2.n.(nz + 2),  where 8 bytes were used for 
each floating point number. 

Once the steady-state concentration profiles were obtained, 
the current a t  the disk electrode was easily calculated by the 

summation of the normal components of the concentration 
gradient. 
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Continuous Liquid-Phase Piezoelectric Biosensor for Kinetic 
Immunoassays 
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The reactlons of lmmunoglobuilns wHh protein A and, subse- 
quently, of antlbodies to these lmmunoglobullns were contin- 
uously monitored by a plezoeiectrlc biosensor. AT-cut crys- 
tals, with a fundamental resonant frequency of 10 MHz, were 
mounted In a Plexlglas holder, and one slde was directly 
coated with proteln A. Upon exposure to solutions contalning 
rabbit or human IgG the resonant frequency was followed 
contlnuously and its decrease due to the binding of IgG to 
proteln A observed. Subsequent addition of sheep antihuman 
IgG to the now immobilized human IgG caused a specific 
3-fold further decrease In resonant frequency. We observed 
a frequency change of approxlmately 1 Hr for each 10 ng of 
added immunoglobulin. Decreaslng the pH to 3 released the 
bound IgG but not the proteln A and permitted reuse of the 
crystal for further IgG binding. 

Increasing attention is being paid to the development of 
nonelectrode biosensors, especially those that can be used to 
determine clinically important molecules (1,2). These sensom 
are constructed by immobilizing a selective binding surface 

'Present address Becton Dickinson Monoclonal Center, 2375 
Garcia Ave., Mountain View, CA 94043. 

to a transducer. The surface can be an absorptive organic fii, 
an immobilized antigen, an immobilized antibody against a 
specific antigen, or other proteins with specific binding sites. 
Selective binding of a molecule to the absorptive surface causes 
the transducer to change one or more of its fundamental 
signals. 

The piezoelectric quartz crystal is such a transducer and 
is commonly used as a low-cost frequency standard. The 
crystal oscillates a t  a very specific resonant frequency when 
placed in an appropriate circuit. The frequency of this res- 
onance can be changed by adding mass to the surface of the 
crystal. 

Some biological applications of quartz crystal microbalances 
have been reported. Quartz crystals have been coated with 
antibodies to the pesticide parathion and have been used to 
specifically detect parathion in gases that are passed over the 
crystal (3) .  Shons et al. (4 )  used antigen-coated crystals ex- 
posed to specific antisera and demonstrated a mass increase 
after washing and drying. Similarly, Muramatsu et al. (5) have 
detected specific mass changes of air-dried crystals coated with 
monoclonal antibodies to the yeast Candida albicans before 
and after incubation with suspensions of C. albicans. Re- 
cently, Muramatsu et  al. (6) have reported the coupling of 
protein A to 9-MHz AT-cut crystals with (7-aminopropy1)- 
triethoxysilane. They measured IgG binding by observing the 
change in resonant frequency of a crystal immersed in distilled 
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