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ABSTRACT

We extend our new approach to the digital simulation of electrochemical systems to the analysis of
cyclic voltammetry experiments. The linear equation systems are handled by an eigenvalue-eigenvector
decomposition of the solution (carried out using the Lanczos algorithm) and the time-dependent
boundary conditions are incorporated via a convolution integral formalism. The accuracy of the method
is displayed by comparing numerical solutions for several one-dimensional cases with analytical results.
As has been shown previously, large gains in efficiency are possible for simulations involving complicated
geometries and /or stiff kinetic equations.

(I) INTRODUCTION

In a recent paper [1], we have presented a new approach to electrochemical
simulations based on an eigenvector—eigenvalue analysis of the diffusion-kinetic
equations. For the simple case of potentiostatic boundary conditions it was shown
that that this type of simulation is not only viable for large systems, but consider-
ably superior to conventional calculations in terms of computational cost. In this
paper, we extend the technique to include time-dependent boundary conditions at
the electrode, including those limited by electron transfer kinetics.

To clarify the formalism of the approach, we first consider the simplest possible
cyclic voltammetry experiment with a linearly swept potential: a one-dimensional
reversible, or Nernstian, system [2,3]. Initially, we assume the rate of electron
transfer is infinitely fast; thus the boundary condition at the electrode is not
dependent on kinetic or charge transfer coefficients. We then extend our method to
include quasi-reversible systems [2,3], which contain kinetic electron transfer limita-
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tions, where the reverse reaction has to be considered. In addition to a linearly
swept potential, the boundary condition at the electrode also includes a dependency
on the standard rate constant, and a charge transfer coefficient.

In both cases the matrix equations for the flux are solved using Green’s function
.parameters (eigenvalues and residues). These are calculated using the Lanczos
algorithm and the recursive residue generation method (RRGM) [4,5] outlined in
Part I. Once evaluated, they can be used to obtain a solution for an arbitrary
electrode process. Thus, the Green’s function parameters need to be produced only
once for a given geometry and set of bulk diffuse parameters. The current can then
be calculated for any set of electrode dynamics by, in the simplest situation,
evaluating a set of one-dimensional integrals, or, in the most complicated, by solving
an integral equation. In that case, however, the resulting integral equation can be
reduced to a row by row multiplication of a matrix with a vector, thus expediently
solving for the current.

We present below only one-dimensional examples. However, as was demon-
strated in Part I, complex two- or three-dimensional systems can be handled in a
straight-forward manner.

(II) GENERAL APPROACH

We will study a cyclic voltammetry experiment in which there are two redox
species, A and B, initially containing only species A, with the electrode held initially
at a potential E,. In this experiment, the potential is swept linearly, so that at time ¢
the potential is E(¢) = E; — vt, where v is the linear potential scan rate. We assume
the rate of electron transfer is so rapid at the electrode surface that species A and B
adjust immediately to the ratio dictated by the Nernst equation

Ay/B, = exp|nF/RT(E;—vt— E°)] 1)

where F is the Faraday constant, 4, = A4(0, ¢), and B, = B(0, t). Here A(x, t) = the
concentration A at position x and time ¢. Assuming that the total concentration
A + B is constant at all x and ¢, which implies that the diffusion coefficients of A
and B are equal to unity, we obtain the boundary condition at the electrode:

exp[nF/RT(E(t) — E°)]
1+ exp|nF/RT(E(t) — E°)]

A3(0, 1) = )

where A} (0, ¢) is the normalized concentration 4,(0, t)/(A + B), the denominator
corresponding to the constant value of the total concentration.

We will now solve for current dictated by this boundary condition. Fick’s second
law governs the bulk diffusion in most electrochemical problems:

dca(x, )/t =D v2c,(x,1t) 3)
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Here, c,(x, t) is the concentration of species A at position x and time ¢, and D is
the diffusion coefficient. The system can be written in matrix form [1] as

dc,/dt=We, + D's, (4)
where
Ca1
en= | 5)
Can

with ¢,; = c,(x = i, t), and where W is the N X N matrix whose elements are given
by ‘
[w],,=—-2D’ ifi=j,i#N

=-D’ ifi=j,i=N

=D’ if |i—j|=1

=0 otherwise

The problem also requires specification of boundary concentrations (¢, and ¢, ;
for one-dimensional problems) and an initial concentration profile c¢(x, ¢t =0). In
eqn. (4), D’ is a dimensional constant, D’ = D/Ax? (here the temporal variable At
is continuous) with D the diffusion coefficient. The column vector s, contains the
electrode boundary condition in all volumes adjacent to the electrode and is zero
elsewhere. The semi-infinite boundary condition ¢,,, =1 is incorporated in the
definition of W.

For the problems under consideration, we monitor only the concentration profile
of the species A. Relaxation of the conservation condition 4 + B = constant would
necessitate simulation of both the 4 and B profiles. This is easily accomplished by
increasing the number of variables in eqn. (5) to include both A and B species. The
resulting composite vector would be

[ a1 W

Can
e=|cn (6)

cBn_

We specify ¢(0) as the vector containing the initial concentration in each volume
element, for both the Nernstian and quasi-reversible problems, as well as the
Cottrell problem outlined in Part I. The vector ¢(0) is given by

1
c©=|: (7)
1



In the single species case, the effect of the source term A,(¢) is to increase the
concentration in the volume one by the increment D’A,(¢) At. In our matrix
formulation, the diffusion equation is modified to read
den/dt = We, + fD'Ay(1) (8)
Here f is a vector containing unity in all volumes adjacent to the electrode (in this
case, only volume 1), and zero elsewhere:

1
0

f=10 9
0

To solve eqn. (8) we transform to the eigenvector representation

dyy/dt=Ay, + M 'fD'Ay(1) (10)

where y, =M~ 'c,, M is the eigenvector matrix of W and A is the diagonal
eigenvalue matrix. Equation (10) is now decoupled into one-variable equations of
the form
dy,/dt=\;y,+0,D'Ay(1) (11)
where y,=[y,],, and o;=[M"~ 'f1 ;={ ¥ f), which is the dot product, or projec-
tion of the eigenvector y; onto f.

Using the convolution theorem, eqn. (11) is solved to yield

»,(1) ="',(0) + o, D’ fo "e~M4,(7) dr (12)

We now apply the Greens function approach of Part I. The quantity of interest is
the concentration in the volume adjacent to the electrode, ¢;, which, as we show in
Appendix A, can be written as

G, (1) =Y R exp(A;r) +D'{§ R exp(}\jt)}f' exp(—A;7) Ay(7) dr=c,
. , 0
J J

(13)
where R} = ( f |y )y |i), and RYP = f |y )y | f), i being identical with
the initial concentration vector ¢(0).

As in Part I, the RRGM [4,5] can be used to calculate the eigenvalues A; and the
residues R{/’ and R{}. Once these are known, obtaining G, (¢) requires only
evaluation of the convolution integrals and summation of terms.

Notice that in eqn. (13) a free diffusion term can be completely separated from
the convolution integral, which contains all the useful information of the voltamme-
try experiment. Only the diffusion modes coupled to the vector f contribute to this
term.

We can rewrite G;/(¢) as

G, (1) =GE(1) + D’fo’{z R} exp(A, (1= 7)) | 4g(7) dr (14)
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If we substitute the boundary condition A4, into eqn. (14), we obtain a set of
one-dimensional integrals that are easily solved for G,,(¢), and thus for the con-
centration of the volume element adjacent to the electrode, c;.

To facilitate evaluation of the integral, the simple variable substitution u=1¢—17
is made, and eqn. (14) becomes

° ’ t .
Gy(1)=Gg(t)+D fo {Z R exp(}\jT)}Ao(t —r)dr (15)
J
We can simplify the notation further by writing
’ t
G,.f(t)=G;;(t)+Dj;G,,(T)AO(z—T)dT (16)
where G, (7) is

Gy (1) = {Z R{P exp(}\j'r)}

The flux (and thus the current) is dependent on ¢; and ¢, the electrode boundary
condition, which for this case is A4,. The current density, i/(area), is related to the
flux of species A at the electrode surface (x = 0) by the equation

i dc

f=D[5;LO (17)
where K = (nF(area)). For the problems considered here, the discrete representation
of the flux is

(2 )e-eo 19

Since c, is obtained through G,,, and the boundary condition c, is defined here as
Ay(1), a simple subtraction yields the current.

(III) QUASI-REVERSIBLE SYSTEMS: ELECTRODE KINETICS

Having developed a general algorithm for obtaining the current with a time-de-
pendent boundary condition, we now treat the conventional cases of electrode
kinetic systems, or quasi-reversible systems [2,3].

For a quasi-reversible system, the net current, or flux, involves appreciable
activated components from both forward and reverse charge transfers. The boundary
condition for these cases is

D(%g)x=o=k° exp(—anf[E(t) — E°]){ 4, — By exp(nf[E(:) —E°]} (19)

where f= F/RT, a is the charge transfer coefficient, and k° is the standard rate
constant. The left hand side of this equation is the flux, which is equal to the current
i divided by a constant (eqn. 16). The right hand side can also be expressed in terms
of i and known functions of ¢. To accomplish this, we make the substitution

Ag=(i+ky)/(ke+ky) (20)
where k= k° exp(—anf[E(t) — E°]) and k,=k° exp((1 — a)nf[E(?) — E°]).



As in the reversible problem, c, is obtained through G,,. Inserting the boundary
condition into eqn. (15), the result is:
e , [t i(t—7)+ky(t—1) _
G,(1)=G3(t)+D foc;,,(T) PRy pEm L)) (21)

The boundary condition A,(z) implies that c,(¢) = A,(¢), and with ¢,(¢) given by
eqn. (21), the equation for flux (eqn. 18) becomes
o , [t i(t—7)+kp(t—1) i(t) +ky(2) | i(2)
[fo(’) +0 [ (D e e | T | Re T e® |~ XD
(22)

Equation (22) is an integral equation for the unknown quantity i(z) in terms of the
known functions k, k;, G;7, and G,. Various numerical approaches to the solution
of this equation are possible. Below, we exploit the fact that i, k,, and k; are slowly
varying functions of time as compared to G;,. This allows a coarse graining of the
operator G, which permits the integral equation to be solved on a relatively sparse
mesh, thus reducing the computation time considerably.

We consider integration over G, (7) to be a matrix operator which maps the
function A,(z — 7) defined on a coarse time grid onto another function, also defined
on a coarse grid. That is

{[O’G,,(f) d'r}Ao(t— ) = (1) (23)

We now seek an N, X N; matrix representation of this integral operator, where N,
and N, are the number of coarse and fine mesh points, respectively. The most
conceptually straightforward approach to this is to interpolate 4,(¢ — 1) onto a fine
mesh, carry out the integration over ¢, and return to the coarse mesh. In matrix
form, this procedure can be represented as j= GZA,, where G is the N X N;
matrix

Gy (7=0) G,(n) . Gy(r=1) 0
G, (7=0) . . . fo(r=2) 0
G, (r=0) . . . L Gy(r=1)

and A, is a vector. Here (1=0, 7, 7,, 73...T7=1) corresponds to the integration
steps over 7. The simplest interpolation scheme approximates A, on the fine grid by
its closest value on the coarse grid. The N; X N, matrix Z reproduces a Simpsons’s
rule integration on the coarse grid. Equation (22) can now be written as

G3(t)+D'GAy— Ay =i(t) /KD’ (24)
where G = GZ. A typical matrix element of G is
~ h
(G)n= j[fo(O) + 4[G//(”'1) + Gy (m) + ---G//('r:—l)]
+2[Gy (1) + Gy (m) + ... + G (1,_,)] + G, (1)] (25)
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where h represents the step difference of the sum: 7, +, — 7, = h. Using eqn. (20), we
can write eqn. (24) as

Go+pG{— 4 Ko ) LSRRI SR P 26
ky+ kg | ky+ k; ky+k;  ky+k;| 'nFAD’ (26)
In matrix form, eqn. (26) becomes

G°+D'GSi+D'GH—[Si+ H)=1Ii(1/nFAD") 27)

where I is the identity matrix and § is a diagonal matrix defined by

1
S Jom =
[ ] [kb(tm)+kf(tm)]
and G° and H are vectors of length N, with

kb(tm)
Ho = o (tm) + ki (1)

Rearranging, eqn. (27) becomes

o ' A _ 1 ' .
G +DGH—H—[IW+S—DGS]I (28)

Equation (28) is an extremely important result. As was noted in Section (I), the
boundary condition 4, is completely separated from the convolution term, G, and
thus from the matrix G. Since A, contains all the useful information of the
voltammetry experiment, we only need construct the matrix G once. These calcula-
tions represent the bulk of computation time, and once solved for a given geometry,
we can then apply any boundary condition at the electrode, or a set of boundary
conditions, to obtain currents (fluxes) dependent on a variety of k°’s and a’s in
minimum computation time.

To obtain more accurate results, we use Lagrange interpolation [6] on the
elements of the matrix GZ. In this case, the Z matrix is somewhat more com-
plicated (see Appendix B), and leads to a final G matrix with typical elements

(G =h/3[ 1 X 4G, (1) + 7, X 2G (1) + ... +1.0 X G;,(1.0)
(G)1a=h/3[1.0X G (1.0) + (1 — 1) X 4G, () + ... +0.0 X G;,(0.0)]

where for this example, we use an step difference of 4 for the integration.

(IV) RESULTS

For the Nernstian (reversible) case, results were compared to a numerical
solution by Nicholson and Shain [2,3] (see Table 1). The results shown in Fig. 1
were obtained with v =1.0 V/s, RT/nF = (28.5/1.109)/n mV at 25°C, D’ = 8.0,
and the integration was carried out with 100 steps per unit time. The diffusion
coefficient D’ must be very large to obtain eigenvalues associated with short times;



TABLE 1

Current functions i /[ D’(nF/RT)]'/? for reversible charge transfer

(E—E,;))n NandS? RRGM ® (E—=E ;)n NandS? RRGM *
/mV /mV
80 0.042 0.041 -10 0.418 0.410
60 0.084 0.083 -20 0.441 0.433
50 0.117 0.115 —285 0.4463 0.439
40 0.160 0.157 —40 0.438 0.431
30 0.211 0.206 -50 0.421 0.415
20 0.269 0.263 —60 0.399 0.393
10 0.328 0.321 —80 0.353 0.346
0 0.380 0.371 —100 0.312 0.302

# Nicholson and Shain [3].
® Recursive residue generation method.

these eigenvalues are large in absolute value. When ¢ is close to 7, the modes of high
frequency (large algebraic eigenvalues) make a substantial contribution to the
exp(A(t — 7)) terms. At times far from 7, eigenvalues large in absolute value also
make a contribution to this term. This was not true in the cases outlined in Part I.
There, the eigenvalues occurred only in a term exp(A?), and eigenvalues associated
with short times were quickly damped.

.16 0.24 0.32 0. 40 0. 48

10 % nF[rT) M2

0.08

o
o

©120.00 40.00  -40.00 -120 00 ~-200.00 -280.00 =-360.00
n(E—E1’2)[mV

Fig. 1. Current with Nernstian boundary condition.



TABLE 2

Current functions i /[ D’(nF/RT)]'/? for irreversible charge transfer

(E-E,;5)n NandS® RRGM ® (E—E, )n Nand$? RRGM °®
/mV /mV

110 0.016 0.021 10 0.462 0.462

100 0.035 0.034 0 0.492 0.490

80 0.073 0.072 -5 0.496 0.495

60 0.145 0.145 -10 0.492 0.491

40 0.264 0.266 -20 0.472 0.470

30 0.337 0.338 -30 0.441 0.439

20 0.406 0.408 ~40 0.406 0.399

15 0.437 0.438 -50 0.374 0.365

# Nicholson and Shain [3].
® Recursive residue generation method.

By increasing the diffusion coefficient D’ and the system size (and the number of
integration steps), the values obtained by the RRGM can be made to converge
exactly with the values obtained by Nicholson and Shain, with some sacrifice in
CPU time. With the RRGM these parameters are easily adjusted, and the program
can be run with varying degrees of accuracy, according to need and available CPU
time. For the calculations reported here, we used a uniform spatial grid with 700
discrete volumes, enough to ensure adequate representation of the diffusion profile.

Results for the irreversible system O +n e~ — R are given in Table 2. The
boundary condition is i(¢)/nFA = k;Cy(0, t), where k; is given in eqn. (20). Here
we use «a=1.0 and v=1 V/s. Again, these parameters are easily adjusted to suit
users’ needs.

For the quasi-reversible systems, results were again compared to previous
numerical results (see Figs. 2—4). The results shown are with v=1 V /s, D’ = 8.0,
and «=0.7, 0.5 and 0.3. The rate constants were defined with the parameter
A=k°/[D'(nF/RT)]'/2. A values in these figures are 1.0, 0.1 and 0.01. The
calculation was performed on a CRAY X-MP; the simulation required 1.18 s for 1
set of kinetic and charge transfer coefficients; and for 9 sets of parameters at once
(Figs. 2—4), the simulation required 1.43 s. Thus for a given geometry, the bulk of
the computation time is done only once, and many sets of parameters can be used
without sacrifice in time.

(V) CONCLUSION

In this paper we have established the validity of the Lanczos algorithm and
RRGM procedures for time-dependent potential electrochemical simulations of
arbitrary geometry. Our approach should increase the utility of digital simulations,
since it yields a greater time improvement than other sophisticated numerical
methods, without introducing constraints on the boundary conditions.
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120.00  40.00 ~40.00  -120 00 -200.00 -2B0.00 -360.00
n(E E1/2)Imv

Fig. 2. Variations of quasi-reversible current function for a = 0.7, and the following values of A: A =1
( ), A=01(— — —), A=001(------ ). A=k°/(D’'nF/RT)/2.

48

. 40

1
1/(D*nF|RT) I2

©120.00  40.00 -40.00  -120 00 —200.00 -280.00 ~-360.00
n(E-Ey) | mv

Fig. 3. Variations of quasi-reversible current function for a = 0.5, and the following values of A: A =1
( »A=01(———), A=001(------ ). A=k°/(D’'nF/RT)/2.

s
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48

1[0 * nF [RT) Y2

T T T
©120. 00 20. 00 -80. 00 -180 00 —‘250. 00 —I380. 00 -—480.00
n(E=Eqfp) [mV

Fig. 4. Variations of quasi-reversible current function for a = 0.3, and the following values of A: A =1
( % A=01(—— —), A=001(------ ). A=k°/(D’'nF/RT)?

The timing results reported above could be improved significantly by various
optimizations procedures, including improved interpolation procedures and numeri-
cal grids for solving eqn. (11). The development of general purpose, numerically
efficient routines will be a subject of future communications.

Looking to the future, we comment briefly here on the limitations of our present
procedures and how these might be overcome. First, there is an obvious restriction
to first order systems. We are currently developing a modified version of the
Lanczos time propagation scheme which takes moderate sized (as opposed to
global) timesteps; the convolution integral is used to correct for nonlinear as well as
external time-dependent terms over this restricted time interval. Preliminary results
indicate that order of magnitude improvements over explicit schemes, as well as
implicit approaches like the Gear package, are routinely realized, as in the present
case. This approach will be applicable to any type of electrochemical simulation.

Secondly, there is the question of accessibility of the methodology to the
electrochemical community. As stated in Part I, given a modular version of our
code, for first order problems one has only to write a subroutine specifying the
action of the diffusion operator on concentration vector to carry out the Lanczos
part of the calculations. As this procedure is identical to the usual computation
required in an explicit scheme to advance the concentration to the next timestep,
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there should be no problem in accomplishing this once the matrix /vector notation
is understood.

Such a procedure does, of course, require a user-friendly version of the Lanczos
driver program and associated subroutines. We intend to explore the modified
algorithm described above which is applicable to non-linear problems before pursu-
ing the development of such a program in detail. In principle, however, there is no
difficulty in carrying out this task.

There is clearly a large set of problems in electrochemistry for which simpler
existing methods are quite adequate; in this case, there is no particular reason to
switch to the method proposed in this paper. However, for stiff systems in complex
geometries, the order of magnitude improvements attainable may make the effort
involved worthwhile. Our next objective is to attack an important electrochemical
problem for which such computational demands are a significant barrier to solution,
and to demonstrate that methods of the type described here can overcome the
barriers. Only in this fashion can the practical advantages of the method (whatever
they turn out to be) be determined definitively.
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(VI) APPENDIX A

In the following, we apply Green’s function formalism to eqn. (12), and show
how we arrive at eqn. (13). Equation (12) reads

y; (1) =My, (0) + o e)‘f’D’f' e MA4,(r) dr (29)
0
Remember o; = [M~ 1j’]j, Yi=a,>and p(£)=M" 'co. We can write eqn. (29) as
»(t) = exp( A1) y(0) + exp(A) M~ 'f [ exp( A1) dy(7) dr (30)
0

Equation (30) is now multiplied by M to transform y(t) into ¢(¢), which is the
desired result. The result is

c(t) = M exp(At) M~ '¢(0) +Mexp(At)M—‘f/0’ exp(— A7) A,(7) dr
= exp[ Wt]c(0) + exp[ Wt] fj(;l exp(—A1)A,(7) dr

=G(1)c(0) + G(z)ffo’ exp(—Ar)A,(7) d7 (31)

I
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Here, G(t) = exp[W?t] is the Green’s function operator; its matrix elements G,,,(¢)
give the probability of an ion initially in volume element n diffusing into cell m at
time ¢. The matrix G(¢) acting on the initial concentration vector gives the
probability profile of a ion initially at ¢(0), and G(¢) acting on f gives the
probability profile of an ion initially at the electrode, and after time ¢, still at the
electrode. G(¢) may be evaluated in terms of the eigenvalues and eigenvectors of W.
From eqn. (31),

G,i(1) =e"G(1)e(0) + eTG(t)ffo’ exp(— A7) A, (7) dr
=e"{Mexp[At]M '} c(0) + e"{Mexp[At]M'} f

xfo' exp(— A1) Ag(7) dr (32)

Equation (32) becomes

N

N
t
Y ey exp(A ) yle(0) + X ey, exp(xkt)y{ffo exp(— A7) 4o(r) dr
k=1 k=1

N N
= Y R exp A r+ ) RY exp Akt./;: exp(—A,7)A4y(7) dr (33)
k=1 k=1

The products R{f> and R}’ are the residues [4,5] of the system. They are a direct
measure of the coupling to both the initial concentration distribution and the
concentrations at the electrodes. Note that the residues associated with eigenvalues
small in absolute value determine long-time behavior (when ¢ is much greater than
7), while all residues, including those associated with large absolute eigenvalues
contribute to short time response (when ¢ is close to 7).

(VII) APPENDIX B

In this appendix we will use Lagrange two point, or linear, interpolation on the
elements of the matrix GZ = G. Lagrange interpolation evaluates the function

f, =f(xq+ph) as
f(xo+Ph)=(1_P)f0+Pf1 (34)

where x;,, — x, = h. For example, the first element of G, which corresponds to the
integral (before interpolation) from 0 to 1 over 7, can be written

(G)yy = fO'G,,(T) dr= g[G,,(o.o) +4.0G,, (1) +2.0G, (1) + ... + G, (1.0)]
(35)
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With interpolation, this splits into two matrix elements

“  h
(G) = 3[0.0G(0.0) + 714Gy () +1:2Gy () + ... + 1.0G,,(1.0)]

(G = g[l.oc,,(o.o) +(1-1)4G, (1) + (1 - 1,)2G,, (7)) + ... +0.0G,,(1.0)]
(36)

The matrix element (G )3, becomes
~ h
(=7 [1.0G,(2.0) + (1 - )4G, () + (1 = 5)2G (7)) + ... +0.0G,,(3.0)]

h , ’ ’ ’
+ 300G, (1.0) + /4Gy, (7)) + 7,2Gy (7)) + ... 1.0Gy, (2.0)] (37)

In general,

(@)= [""Gy(r) dr

x=y
h
= 3[1.06,,()&' _y+ 1) - (1 - T1)4fo(1 - T]) +...

HZOG”(x ) (38)
+ 300G, (x ) + /4G, () + ... +1.0G, (x —y + 1)]
x>y

(é)xy=(G~)12 x=y—1

(G)ey=00 x<y-1

With interpolation, the accuracy is improved without much sacrifice in CPU time.
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