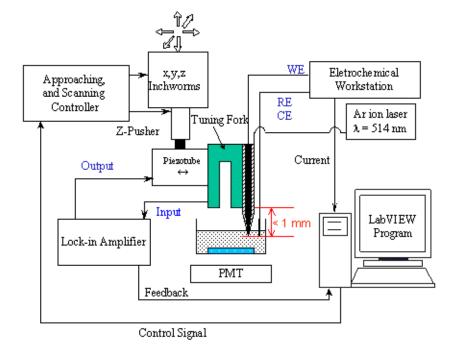
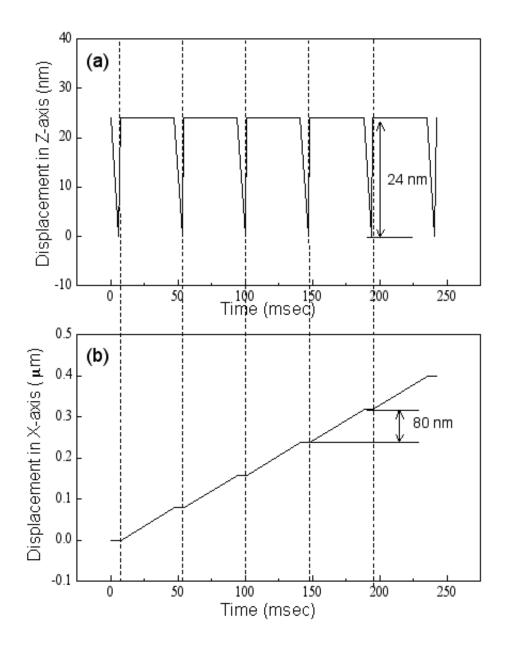
Combined Scanning Electrochemical/Optical Microscopy With Shear Force and Current Feedback

Youngmi Lee, Zhifeng Ding, and Allen J. Bard*

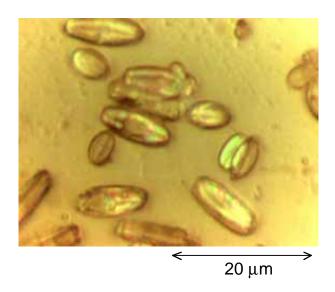
Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712

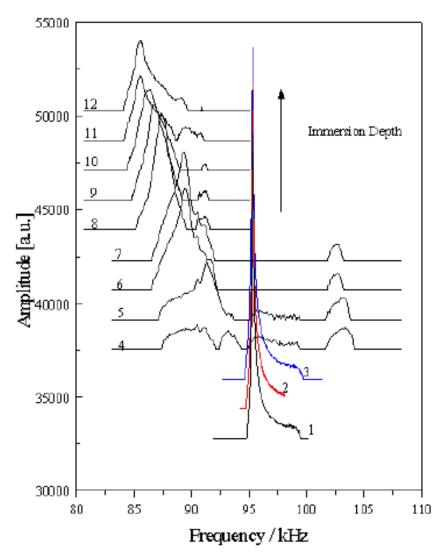

[Supporting Information]

SI Table 1. Resonance frequency and Q-factor of a 32.768 kHz tuning fork depending on tip immersion depth into solution


	Resonance Frequency	Q-factor
Bare tuning fork	~ 32 kHz	~ 450
With a tip in air	30 ~ 31.5 kHz	40 ~ 50
Only a tip in solution	30 ~ 31.5 kHz 40 ~ 5	
Both a tip and a tuning	No obvious	
fork in solution	resonance peak	N/A

SI Table 2 Resonance frequency and Q-factor of a 100 kHz tuning fork depending on tip immersion depth into solution


	Resonance Frequency	Q-factor
With a Tip in Air	95.337 kHz	~ 400
Only a Tip in Solution	~ 95.3 kHz	360 ~ 400
Both a Tip and a Tuning-fork in Solution	No obvious resonance peak	
	91.4 kHz	46.4
	89.5 kHz	36.5
	89.4 kHz Immer dep	49.8
	86.7 kHz	45.8
	86.3 kHz	35.3
	85.5 kHz	45.1


SI Figure 1. Schematic of instrumental setup for SECM/OM with shear force detection using a tuning fork.

SI Figure 2. Tip displacement in (a) z- and (b) x-direction as a function of scanning time. All signal measurements were taken at the time indicated by dotted line.

SI Figure 3. Optical microscope image of fresh water diatoms, Navicula minima.

SI Figure 4. Tuning fork amplitude signal as a function of frequency for increasing immersion depths. Line 1: both a tuning fork and the attached tip are in the air; Line 2 and 3: only the tip immersed in water.