
Supporting Information

Photoelectrochemical Characterization of CuInSe₂ and Cu(In_{1-x}Ga_x)Se₂ Thin Films for Solar Cells

Heechang Ye,[†] Hyun S. Park,[†] Vahid Akhavan,[‡] Brian W. Goodfellow,[‡] Matthew G. Panthani,[‡] Brian A. Korgel,[‡] and Allen J. Bard[†]

[†]Center for Electrochemistry, Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712 and [‡]Department of Chemical Engineering, Texas Materials Institute, and Center for Nano- and Molecular Science and Technology, The University of Texas at Austin, Austin, Texas 78712-1062

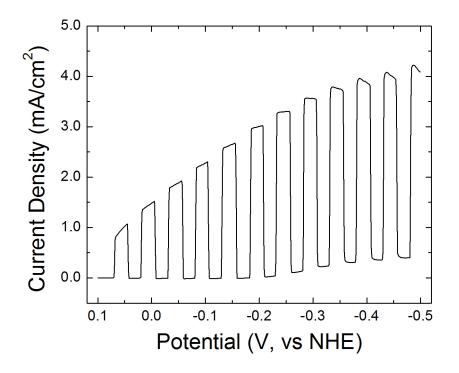


Figure S1. X-ray diffraction pattern of electrodeposited CIGS film (a) and CuInSe₂ reference pattern (b, JCPDS #40-11487). MoSe₂ XRD patterns are also indicated (α, Abou-Ras D.; Kostorz G.; Bremaud D.; Kalin M.; Kurdesau F.V.; Tiwari A.N.; Dobeli M. *Thin Solid Films* **2005**, 480-481, 433-438.)

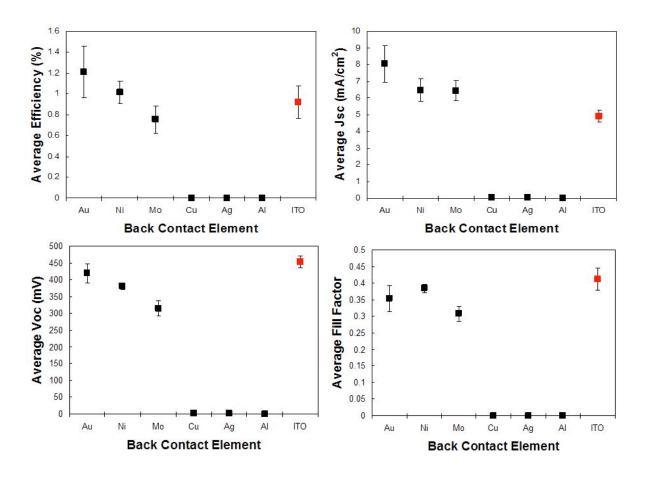
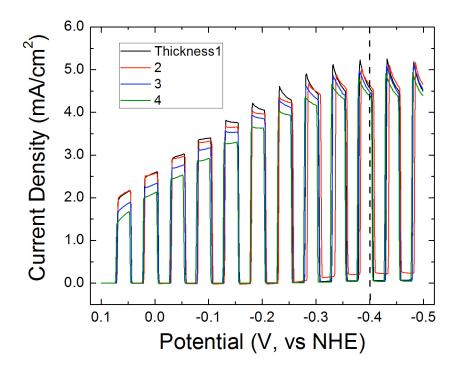
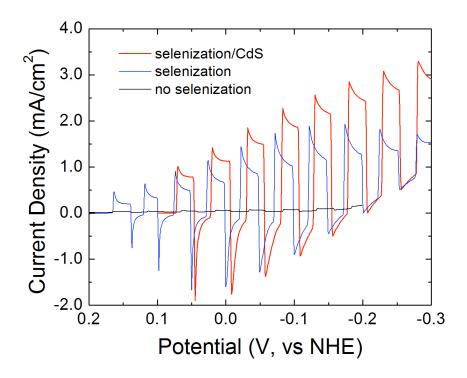

Element	Cu	In	Ga	Se
Composition (%)	27	19	7	47

Table 1. Element compositions of electrodeposited CIGS film obtained from energy dispersiveX-ray spectroscopy (EDS) measurements.


Instrumentation. X-ray diffraction (XRD) pattern was obtained using a Bruker-Nonius D8 Advance powder diffractometer with Cu K α radiation (λ =1.54 Å) operated at 40 kV and 40 mA. The diffractogram was obtained with scan rate of 12 °/min in 0.02 ° increments. Energy dispersive X-ray spectroscopy (EDS) equipped on LEO1530 Scanning electron microscopy (SEM) was used for elemental analysis of electrodeposited CIGS film.


Figure S2. Linear sweep voltammograms (LSVs) of NP-CIGS film on Au with light chopping in 0.1 M EV(ClO₄)₂ and 0.1 M TBAPF₆ in acetonitrile (MeCN). Scan rate: 10 mV/s, light source: Xe lamp (ca. 100 mW/cm²).

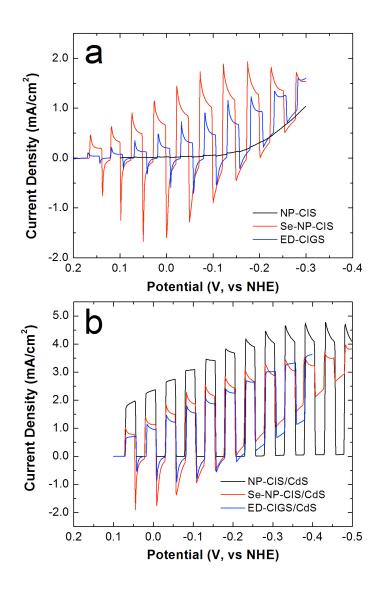

Figure S3. Plots of average efficiency, short circuit current (J_{sc}), open circuit voltage (V_{oc}), and fill factor (FF) of solid state device prepared on various substrates (Au, Ni, Mo, and ITO).

Figure S4. LSVs of NP-CIS/CdS films on Au of various thickness with light chopping in 0.1 M $EV(ClO_4)_2$ and 0.1 M TBAPF₆ in MeCN. The thickness of sample 1 was about 150 nm and samples 2, 3, and 4 were prepared by spraying CIS nanoparticle solution 2, 3, and 4 times longer. Scan rate: 10 mV/s, light source: Xe lamp (ca. 100 mW/cm²).

Figure S5. LSVs of selenized NP-CIS/CdS (red), selenized NP-CIS (blue), and as prepared NP-CIS (black) films on Mo with light chopping in 0.1 M EV(ClO₄)₂ and 0.1 M TBAPF₆ in MeCN. Scan rate: 10 mV/s, light source: Xe lamp (ca. 100 mW/cm²).

Figure S6. Comparison of LSVs of NP-CIS (black), selenized NP-CIS (red), and ED-CIGS (blue) films before (a) and after (b) CdS layer deposition.