SUPPORTING INFORMATION

Synthesis, Electrochemistry and Electrogenerated Chemiluminescence of Azide-BTA, a D-

A-π-A-D species with Benzothiadiazole and N,N-diphenylaniline, and its Nanoparticles

Jungdon Suk^a, Jian-Zhang Cheng^b, Ken-Tsung Wong^{b*}, and Allen J. Bard^{a*}

^a Center for Electrochemistry and Department of Chemistry and Biochemistry, The University of

Texas at Austin, Austin, Texas 78712.

^bDepartment of Chemistry, National Taiwan University, 10617 Taipei, Taiwan

Contents

A. NMR spectra of products	S 1
B. Scan rate studies	S3
C. TEM images and size distribution of NPs synthesized in various conditions	S5
D. Absorption and emission Spectra of NPs	S7
E. ECL data of NPs	S 8

Figure S1. ¹H and ¹³C NMR Spectra of (3).

Figure S2. ¹H and ¹³C NMR Spectra of Azide-BTA.

Figure S3. (a) Oxidation CV of 0.5 mM **Azide-BTA** in 1:1 Bz: MeCN at various scan rates. (b) Oxidation peak current versus the square root of the scan rate $(v^{1/2})$.

Figure S4. (a) Reduction CV of 0.5 mM **Azide-BTA** in 1:1 Bz:MeCN at various scan rates. (b) Reduction peak current versus the square root of the scan rate $(v^{1/2})$.

Figure S5. Experimental (solid line) and simulated cyclic voltammograms 0.5 mM Azide-BTA reduction with scan rate from 50 mV/s to 2 V/s. Simulation mechanism involves two, oneelectron reductions and is corrected for uncompensated resistance, R_u (1200 Ω) and double layer capacitance, C_d (600 µF): $E^{\circ}_{1, red}$ =-1.44 V, $E^{\circ}_{2, red}$ =-1.49 V vs. SCE, $k^{\circ} \ge 10^4$ cm/s, α = 0

Figure S6. (Left) TEM Image of organic NPs of **Azide-BTA** synthesized by injecting 800 μ L of **Azide-BTA**/THF (5 × 10⁻⁵ M) to 10 mL of R.T. water under vigorous stirring by 50 μ L microsyringe. (Right) Histogram of size distribution of NPs. Average size of NPs is 80 ± 30 nm.

Figure S7. (Left) TEM Image of organic NPs of Azide-BTA prepared with 800 μ L of Azide-BTA/THF (5 × 10⁻³ M) to 10 mL of deionized water (in room temperature) under vigorous stirring by 50 μ L microsyringe. (Right) Histogram of size distribution of NPs. Average size of NPs is 95 ± 38 nm.

Figure S8. (a) Spectra of fluorescence of **Azide-BTA** as a function of the water fractions in THF. (b) Spectra of absorbance (black) and fluorescence (red) of **Azide-BTA** NPs in water with different sizes: (solid line) 20 nm NPs (dotted line) 3 nm NPs. Emission spectra were excited at the absorption maxima (450 nm).

Figure S9. CV of **Azide-BTA** NPs in water with 0.1 M NaClO₄ at a scan rate of 100 mV/s. WE: Pt disk, CE: Pt coil, RE: Ag/AgCl.

Figure S10. Transient ECL experiment, electrochemical current (black line) and ECL intensity (red line) for **Azide-BTA** NPs in water with 0.1 M NaClO₄. Sampling time: 1 ms, pulsing pattern: from -2 V to 2.7 V, pulse width is (a) 0.5 s (b) 1 s.