Supporting Information

Formation of a Silicon Layer by Electroreduction of SiO₂ Nanoparticles in

CaCl₂ Molten Salt

Sung Ki Cho, Fu-Ren F. Fan, and Allen J. Bard*

Center for Electrochemistry, Department of Chemistry and Biochemistry The University of Texas at Austin, Austin, TX 78712

Figure S1. A cyclic voltammogram on a Mo electrode (1 mm dia. wire, 0.22 cm^2) at a scan rate of 100 mV/s with 10 mA/cm² of current density passing on dynamic reference electrode (1 mm dia. Mo wire, 0.22 cm^2) in 850 °C CaCl₂ melt.

^{*} To whom correspondence should be addressed. E-mail: ajbard@mail.utexas.edu

Figure S2. Cyclic voltammograms on a Mo electrode (a) contacted with (0.3 cm wide and 0.5 cm long) quartz piece and (b) with 0.2 M Na₂SiO₃ in 850 °C CaCl₂ melt.

Figure S3. A SEM image of Si deposited on Mo grown in 850 °C CaCl₂ melt containing 0.2 M Na_2SiO_3 for 500 s. EDS analyses show that the Si film on Mo is composed of Si 48 at%, O 8 at%, C 19 at%, Na < 1 at%, and Mo 24 at%.

Figure S4. Cyclic voltammograms on a Mo foil working electrode (0.3 cm width, 0.42 cm²) at a scan rate of 20 mV/s with SiCl₄ gas mixed with Ar carrier gas which is transferred directly to 850 °C CaCl₂ melt.