Supporting Information for:

Synthesis, Photophysics, Electrochemistry and Electrogenerated Chemiluminescence of PEG-Modified BODIPY dyes in Organic and Aqueous Solutions

Alexander B. Nepomnyashchii, Allen J. Pistner, Allen J. Bard* and Joel Rosenthal*

Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716 and Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712

Index		Page
Figure S1	UV-vis absorption and emission spectra for BOPEG3	S2
Figure S2	CV analyses for BOPEG2	S3
Figure S3	CV analyses for BOPEG3	S4

Figure S1. Absorption and fluorescence spectra of 2 μ M BOPEG3 in water

Figure S2. Cyclic voltammograms of 2.2 mM **BOPEG2** during scan in negative (a) and positive (b) direction. Experimental (solid line) and simulated (dashed line) data for oxidation of (c-h) 2.2 mM and (i-p) 3 mM of **BOPEG2**; (c) and (g) scan rate 0.1 V/s; (d) and (f) 0.25 V/s; (e) and (i) 0.5 V/s; (h) and (j) 1 V/s. Experimental data: solvent: methylene chloride; supporting electrolyte: 0.1 M TBAPF₆; electrode area: 0.0314 cm². Simulated data: diffusion coefficient of the dye is 6.6 x 10⁻⁶ cm²/s; uncompensated resistance 800 Ω ; capacitance 7 x 10⁻⁷ F was used in calculations.

Figure S3. Cyclic voltammograms of 0.1 mM **BOPEG3** (a-d); (a) ful scan; (b) scan to the negative direction, where 0.05 V/s is black, 0.1 V/s red, 0.25 V/s (blue) and 0.5 V/s (red) and (c) 0.1 V/s (green line), 0.25 V/s (black line), 0.5 V/s (red line) and 1 V/s (blue line); (d) scan in water for 1 mM of **BOPEG3**. Solvent: methylene chloride (a-c); (d) water; supporting electrolyte: 0.1 M TBAPF₆ for the DCM scans and 0.2 M NaNO₃ for aqueous experiment; 50 mM phosphate buffer was applied for aqueous experiment; 0.0314 cm² platinum electrode was used for experiments in DCM and 0.071 cm² glassy carbon for aqueous solution experiments.