Supporting Information

Rapid screening by scanning electrochemical microscopy (SECM) of dopants for Bi₂WO₆

Improved photocatalytic water oxidation with Zn doping

Chinmoy Bhattacharya, Heung Chan Lee and Allen J. Bard*

Center for Electrochemistry, Department of Chemistry and Biochemistry, The University of Texas at Austin, 105 E 24th Street, Stop A5300, Austin, TX 78712

Figure S1. (a) SPECM images of the array photocurrent of Co and V doped Bi/W oxide photocatalyst in a $0.1 \text{ M Na}_2\text{SO}_3/\text{Na}_2\text{SO}_4$ solution with the array held at constant applied potential of 0.2 V (vs. Ag/AgCl reference electrode) under UV-visible light. The arrays show 'negative effect' of the dopants.

Figure S1. (b) SPECM images of the array photocurrent of Cu and Ni doped Bi/W oxide photocatalyst in a 0.1 M Na₂SO₃/Na₂SO₄ solution with the array held at constant applied potential of 0.2 V (vs. Ag/AgCl reference electrode) under UV-visible light. The arrays show 'insignificant effect' of the dopants.

Figure S1. (c) SPECM images of the array photocurrent of Cr and Fe doped Bi/W oxide photocatalyst in a 0.1 M Na₂SO₃/Na₂SO₄ solution with the array held at constant applied potential of 0.2 V (vs. Ag/AgCl reference electrode) under UV-visible light. The arrays show 'negative effect' of the dopants.

Figure S1. (d) SPECM images of the array photocurrent of Ag and Mo doped Bi/W oxide photocatalyst in a $0.1 \text{ M Na}_2\text{SO}_3/\text{Na}_2\text{SO}_4$ solution with the array held at constant applied potential of 0.2 V (vs. Ag/AgCl reference electrode) under UV-visible light. The arrays show 'negative effect' of the dopants.

Figure S1. (e) SPECM images of the array photocurrent of Ca and Ta doped Bi/W oxide photocatalyst in a 0.1 M Na₂SO₃/Na₂SO₄ solution with the array held at constant applied potential of 0.2 V (vs. Ag/AgCl reference electrode) under UV-visible light. The arrays show 'insignificant effect' of the dopants.

Figure S2. Linear sweep voltammograms (LSVs) of Bi_2WO_6 and 12% Zn doped Bi_2WO_6 thin films in (a) 0.1 M Na₂SO₄ (0.1M phosphate buffer) and (b) 0.1 M Na₂SO₃ with 0.1 M Na₂SO₄ solution under visible light illumination.

Figure S3. Photoelectrochemical water oxidation process: Oxygen bubble detected on the semiconductor surface through the rubber O-ring during chronoamperometry (stability test).

Figure S4. (a) Optical micrograph of the Bi_2WO_6 semiconductor film surface obtained through Veeco profiler. (b) Thickness profile diagram from FTO to oxide thin film (along Y axis).

Figure S5. (a) Action spectrum of Bi_2WO_6 and 12% Zn doped Bi_2WO_6 thin films in 0.1 M SO_4^{2-} (0.1M phosphate buffer) solution. Constant applied potential 0.3 V vs. Ag/AgCl reference electrode. (b) Chronoamperometry plots with chopped monochromatic light at different wavelengths for the two materials in 0.1 M SO_4^{2-} (0.1M phosphate buffer) solutions to derive the action spectrum.

Figure S6. IPCE and APCE plots of Bi_2WO_6 and 12% Zn doped Bi_2WO_6 thin films in 0.1 M Na₂SO₄ (0.1M phosphate buffer) solution at applied potential 0.3 V vs. Ag/AgCl reference electrode.

Figure S7. XRD pattern of the undoped Bi₂WO₆ and different level of Zn doped (2%, 8%, 12% and 18% Zn) Bi₂WO₆ thin films. The inset figures are magnified area under the curve, for identification of the low intense Bi₂O₃ and ZnO peaks. The different peaks marked as ψ : Bi₂O₃^{cubic} - (index number: 16-0654); # : Bi₂O₃^{cubic} - (index number: 65-3319) and * : ZnO^{hexagonal} - (index number: 36-1451).