Electronic Supplementary Information for:

Synthesis, Electrochemistry and Electrogenerated Chemiluminesce of Two BODIPY-Appended Bipyridine Homologues

Honglan Qi,^{†,§} Justin J. Teesdale,[‡] Rachel C. Pupillo,[‡] Joel Rosenthal,^{*‡} and Allen J Bard^{*†}

[†]Center for Electrochemistry, Department of Chemistry and Biochemistry, The University of Texas, Austin, Texas 78712, United States

^{*t*}Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, 19716, United States

[§]Permanent Address: School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R China

Index		Page
Figure S1	CVs of BB3 and BB4 recorded with an ultramicroelectrode	S2
Figure S2	Scan rate dependence for oxidation and reduction of BB3	S3
Figure S3	Scan rate dependence for oxidation and reduction of BB4	S4
Figure S4	Experimental and simulated polarization curves for oxidation of BB3	S5
Figure S5	Experimental and simulated polarization curves for reduction of BB3	S6
Figure S6	Experimental and simulated polarization curves for oxidation of BB4	S7
Figure S7	Experimental and simulated polarization curves for reduction of BB4	S8
Table S1	Coordinates for DFT optimized structure of BB3	S9
Table S2	Coordinates for DFT optimized structure of BB4	S12

Figure S1. Cyclic voltammograms of (a) 0.59 mM **BB3** and (b) 0.68 mM **BB4** in CH_2Cl_2 containing 0.1 M TBAPF₆. CVs were recorded using a platinum ultramicroelectrode (r = 12.5 µm) at a scan rate (v) of 10 mV/s.

Figure S2. Scan rate dependence for (a) oxidation and (b) reduction of 0.59 mM **BB3** in CH_2CI_2 containing 0.1 M TBAPF₆. CVs were recorded using a platinum disk working electrode (A = 0.043 cm²).

Figure S3. Scan rate dependence for (a) oxidation and (b) reduction of 0.59 mM **BB4** in CH_2CI_2 containing 0.1 M TBAPF₆. CVs were recorded using a platinum disk working electrode (A = 0.043 cm²).

Figure S4. Comparison between simulated and experimental polarization curves for oxidation of a 0.59 mM solution of **BB3** at various scan rates. Simulations were prepared for an EE mechanism ($E_{1/2}(A/A^*) = 1.14 \text{ V}$; $E_{1/2}(A^*/A^{2*}) = 1.19 \text{ V}$) with a heterogeneous ET rate constant of $k^\circ > 0.01 \text{ cm/s}$, diffusion coefficient of $D = 4.0 \times 10^{-6} \text{ cm}^2/\text{s}$, uncompensated resistance of 2032 Ω , and capacitance of 3.0×10^{-7} F. Experimental polarization curves were recorded in CH₂Cl₂ containing 0.1 M TBAPF₆ with a platinum disk working electrode (A = 0.043 cm²).

Figure S5. Comparison between simulated and experimental polarization curves for reduction of a 0.59 mM solution of **BB3** at various scan rates. Simulations were prepared for an EE mechanism ($E_{1/2}(A/A^-) = -1.17 \text{ V}$; $E_{1/2}(A^-/A^{2-}) = -1.24 \text{ V}$) with a heterogeneous ET rate constant of $k^{\circ} > 0.01 \text{ cm/s}$, diffusion coefficient of $D = 4.0 \times 10^{-6} \text{ cm}^2/\text{s}$, uncompensated resistance of 2032 Ω , and capacitance of 3.0 × 10⁻⁷ F. Experimental polarization curves were recorded in CH₂Cl₂ containing 0.1 M TBAPF₆ with a platinum disk working electrode (A = 0.043 cm²).

Figure S6. Comparison between simulated and experimental polarization curves for oxidation of a 0.68 mM solution of **BB4** at various scan rates. Simulations were prepared for an EE mechanism ($E_{1/2}(A/A^+) = 1.12 \text{ V}$; $E_{1/2}(A^+/A^{2+}) = 1.17 \text{ V}$) with a heterogeneous ET rate constant of $k^\circ > 0.01 \text{ cm/s}$, diffusion coefficient of $D = 4.0 \times 10^{-6} \text{ cm}^2/\text{s}$, uncompensated resistance of 3500 Ω , and capacitance of $3.5 \times 10^{-7} \text{ F}$. Experimental polarization curves were recorded in CH₂Cl₂ containing 0.1 M TBAPF₆ with a platinum disk working electrode (A = 0.043 cm²).

Figure S7. Comparison between simulated and experimental polarization curves for reduction of a 0.68 mM solution of **BB4** at various scan rates. Simulations were prepared for an EE mechanism ($E_{1/2}(A/A^+) = -1.18 \text{ V}$; $E_{1/2}(A^+/A^{2+}) = -1.24 \text{ V}$) with a heterogeneous ET rate constant of $k^\circ > 0.01$ cm/s, diffusion coefficient of $D = 4.0 \times 10^{-6}$ cm²/s, uncompensated resistance of 3500 Ω , and capacitance of 3.5 × 10⁻⁷ F. Experimental polarization curves were recorded in CH₂Cl₂ containing 0.1 M TBAPF₆ with a platinum disk working electrode (A = 0.043 cm²).

Atom	X-position	Y-position	Z-position
В	12.45162308	5.97078156	18.59874221
В	4.72633538	-0.73817455	6.41639447
F	11.76743826	6.55759135	19.65301748
F	13.81690982	6.14041117	18.77716245
F	3.87999738	-1.82774463	6.30690810
F	4.87364625	-0.14156688	5.16593203
Ν	12.11673264	4.46433175	18.49900167
Ν	12.02169588	6.61769384	17.25632617
Ν	8.48270000	2.59410000	14.41060000
Ν	8.65638352	2.23059101	10.83566118
Ν	6.11034655	-1.16294114	6.95831950
Ν	4.15253279	0.29380446	7.42686052
С	12.47039987	3.49669845	19.36561456
С	12.02584901	2.23213112	18.90449304
С	11.35076341	2.44913638	17.71236654
С	11.42013746	3.85424132	17.44597670
С	13.29417676	3.77616246	20.59032018
Н	13.05524765	4.65562221	20.94946825
Н	14.24461978	3.76572783	20.35367062
Н	13.11705155	3.08902704	21.26543652
С	12.32367580	0.93054684	19.58065972
Н	11.61138669	0.28134779	19.35145475
Н	12.30182429	1.06726525	20.56158526
С	13.66422789	0.34138916	19.19654816
Н	13.77326244	-0.53149769	19.62787381
Н	14.38127518	0.94310259	19.49039650
Н	13.70667932	0.23238812	18.22315591
С	10.71874972	1.37590352	16.88907581
Н	10.88062450	0.50526246	17.30705916
Н	11.10506754	1.38385586	15.98900059
Н	9.75338931	1.53537288	16.83144875
С	12.26630740	7.87102926	16.85816054
С	11.74735286	8.08704745	15.58321653
С	11.14442642	6.90587663	15.16665621
С	11.31578358	5.96997113	16.23617387
С	13.00949765	8.86778047	17.71141710
Н	12.88396507	8.64668569	18.65772868
Н	12.66430286	9.76904408	17.53780235
Н	13.96353677	8.83702251	17.49252734
С	12.33660690	9.41692632	14.52054350

 Table S1. Cartesian coordinates for DFT optimized structure of BB3

Н	13.21392148	9.79423305	14.78350373
Н	12.30327915	9.21266696	13.55136658
С	11.27846547	10.09539176	14.97921024
Н	11.35446590	11.03411210	14.71189274
Н	11.25647189	10.03456393	15.95709714
Н	10.45971864	9.71027763	14.60757382
С	10.47162541	6.71596692	13.82694635
Н	10.34329032	7.58864584	13.40109940
Н	9.60233624	6.28437062	13.95775546
Н	11.03388365	6.15252638	13.25631108
С	11.00590000	4.61740000	16.35080000
С	9.15610000	3.19620000	15.41740000
Н	8.82480000	3.10320000	16.30190000
С	10.30650000	3.94340000	15.21750000
С	10.78940000	4.07490000	13.94040000
Н	11.58320000	4.57100000	13.77640000
С	10.10360000	3.47230000	12.88760000
Н	10.42130000	3.55910000	11.99740000
С	8.95170000	2.74410000	13.15220000
С	8.18390000	2.07740000	12.08800000
С	7.02289852	1.35361687	12.35989253
Н	6.70195657	1.26122157	13.24902866
С	6.34598273	0.76905772	11.29282914
Н	5.55165212	0.27355741	11.45051799
С	6.82415589	0.90860659	10.01492980
С	7.97968382	1.63745692	9.82360764
Н	8.31763611	1.72722238	8.94089896
С	6.08321203	0.31861973	8.86075352
С	6.94542084	-2.05851184	6.39039795
С	8.15838409	-2.11822701	7.11769342
С	8.05518848	-1.19142954	8.15110317
С	6.76971648	-0.59881039	8.06282872
С	6.60955220	-2.85340776	5.16570195
Н	5.63699290	-2.90419686	5.06656800
Н	6.97825206	-3.75752252	5.25087665
Н	6.99516925	-2.41622715	4.37744690
С	9.30857610	-3.01513108	6.75249974
Н	9.86008503	-3.18204584	7.55718490
Н	8.95665782	-3.88629510	6.43732925
С	10.16453325	-2.40716746	5.68100260
Н	10.92396536	-2.99806919	5.49454411
Н	10.49629819	-1.53552711	5.98267583
Н	9.63283032	-2.29102087	4.86468103

С	9.18637898	-0.87987425	9.10697263
Н	9.90563838	-1.53494326	8.98781290
Н	8.85658543	-0.92050520	10.02873633
Н	9.53121657	0.02068429	8.92362583
С	2.93495410	0.87754417	7.35997216
С	2.73536654	1.70471344	8.47747178
С	3.90800036	1.64205468	9.24260680
С	4.78754011	0.75411688	8.57312158
С	2.00144532	0.68614440	6.19832230
Н	2.04467882	-0.24338390	5.89290578
Н	2.26456005	1.28211737	5.46642601
Н	1.08580118	0.89725475	6.47669909
С	1.50222911	2.51809893	8.78089027
Н	0.70946719	2.03966090	8.43316208
Н	1.40316050	2.59229763	9.76373599
С	1.53353721	3.89650604	8.19219478
Н	0.70678127	4.36849139	8.42210323
Н	1.61449444	3.83410133	7.21787545
Н	2.30135154	4.38856535	8.55318828
С	4.14147652	2.43007452	10.50609843
Н	3.30334187	2.85233746	10.78835634
Н	4.81563908	3.12158542	10.34014819
Н	4.45878385	1.82777598	11.21275000

Atom	X-position	Y-position	Z-position
В	18.92561336	2.46523773	17.82702666
F	20.00315218	3.28241460	18.17884079
F	18.76784419	2.49742061	16.45353262
Ν	15.18480000	0.09350000	20.82760000
Ν	19.19120510	1.02637309	18.32948705
Ν	17.64597756	2.94696113	18.55106144
С	14.56820000	-0.54390000	21.85210000
С	15.27880000	-1.12700000	22.89500000
Н	14.82180000	-1.57620000	23.59750000
С	16.66500000	-1.04270000	22.89500000
Н	17.17320000	-1.44920000	23.58620000
С	17.28380000	-0.36610000	21.88330000
Н	18.22990000	-0.27940000	21.87610000
С	16.52860000	0.18710000	20.87490000
С	17.28270000	0.92490000	19.80150000
С	18.40865748	0.31567592	19.23626344
С	19.00994100	-0.96493926	19.44340199
С	20.17623204	-0.98592175	18.66568064
С	20.24328217	0.24674374	17.99007944
С	18.56153176	-2.08949685	20.29739589
Н	18.95902731	-2.92495006	19.97392773
Н	17.58357094	-2.15847999	20.26038599
Н	18.84220485	-1.93044849	21.22189107
С	21.19443857	-2.07072138	18.55613906
Н	21.55606772	-2.07837970	17.63458459
Н	20.75288608	-2.94268710	18.71321624
С	22.33696898	-1.92130002	19.52663104
Н	22.93987833	-2.69010575	19.44520367
Н	21.98573319	-1.87790658	20.44022815
Н	22.83047289	-1.09891827	19.32632853
С	21.30849431	0.72249752	17.05597307
Н	20.89432932	1.05505075	16.23195098
Н	21.91191826	-0.02049216	16.84212083
Н	21.81745266	1.44386141	17.48104138
С	17.10268351	4.17905857	18.44901285
С	16.02220448	4.30844989	19.35182948
С	15.90729208	3.09096462	20.03223207
С	16.92974590	2.23660383	19.51110440
С	17.62644016	5.22652071	17.52830560
Н	18.56930821	5.40184889	17.73440436

 $\textbf{Table S2.} \ \text{Cartesian coordinates for DFT optimized structure of } \textbf{BB4}$

Н	17.10914505	6.05106205	17.64252251
Н	17.54533246	4.91737390	16.60139251
С	15.22290996	5.54348652	19.54876038
Н	14.32995160	5.29203026	19.89708735
Н	15.09080800	5.98054681	18.67116459
С	15.84821870	6.53351045	20.49190006
Н	15.22884394	7.27769053	20.64129328
Н	16.68079320	6.87439774	20.10245982
Н	16.04196197	6.09404355	21.34557082
С	14.95526104	2.82990329	21.14963569
Н	14.20277912	3.45440213	21.09047931
Н	15.41495483	2.95374554	22.00596407
Н	14.62287786	1.91036997	21.08723833
В	8.69170000	1.52065141	26.40159207
F	7.33460000	1.22498645	26.55489879
F	9.09200000	2.34192246	27.43970887
Ν	12.47820000	0.02464303	22.91635459
Ν	8.91410000	2.19924791	25.02922845
Ν	9.51250000	0.20944181	26.37387371
С	13.09480000	-0.54390000	21.85210000
С	12.38420000	-1.15552789	20.82567059
Н	12.84120000	-1.53931074	20.08540198
С	10.99800000	-1.19767789	20.89867653
Н	10.48980000	-1.59302465	20.20103720
С	10.37920000	-0.65981999	21.99047932
Н	9.43310000	-0.69693461	22.06916372
С	11.13440000	-0.06311998	22.97376457
С	10.38030000	0.49757169	24.14941811
С	9.71610000	1.71980864	23.99644162
С	9.63310000	2.63393583	22.90012689
С	8.74540000	3.64529807	23.29339610
С	8.33820000	3.34824842	24.60730118
С	10.30610000	2.58708144	21.58108107
Н	10.33770000	3.48844720	21.19746978
Н	11.22010000	2.24825400	21.69214742
Н	9.80930000	1.99375997	20.98114401
С	8.27350000	4.81931946	22.50313140
Н	8.13290000	5.58292846	23.11732181
Н	8.97940000	5.07751596	21.85892195
С	6.99600000	4.55981236	21.74801088
Н	6.76910000	5.34502656	21.20658000
Н	7.11490000	3.78342464	21.16235386
Н	6.27120000	4.38276373	22.38306810

С	7.37880000	4.11016086	25.46323013
Н	7.78440000	4.27416181	26.34057215
Н	7.16750000	4.96688567	25.03513923
Н	6.55610000	3.58976743	25.57477799
С	9.54150000	-0.71963299	27.35347846
С	10.28510000	-1.84574892	26.93136848
С	10.72850000	-1.58125543	25.63065231
С	10.24420000	-0.27782463	25.29384394
С	8.84390000	-0.54918946	28.65866161
Н	7.88670000	-0.40312024	28.50166230
Н	8.96560000	-1.35533949	29.20255442
Н	9.22010000	0.22255013	29.13216943
С	10.48430000	-3.08047614	27.73057875
Н	11.31690000	-3.52429255	27.42769132
Н	10.60600000	-2.82924996	28.67964224
С	9.35010000	-4.06266599	27.63278147
Н	9.58800000	-4.88419959	28.11051942
Н	8.54510000	-3.67273451	28.03400035
Н	9.17860000	-4.27097173	26.69117760
С	11.46630000	-2.55146128	24.77189814
Н	11.91170000	-3.21573711	25.33765762
Н	10.83560000	-3.00335182	24.17359551
Н	12.13580000	-2.07321632	24.23995356