Supporting Information

Pattern Recognition Correlating Materials Properties of the Elements to Their Kinetics for the Hydrogen Evolution Reaction

Kevin C. Leonard^{γ} and Allen J. Bard^{*}

Center for Electrochemistry, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712

Corresponding Author: ajbard@mail.utexas.edu

Experimental Procedure for Linear Sweep Voltammetry Experiments

Linear sweep voltammograms (LSV) were conducted to measure the exchange current density on MoSi₂. Commercial MoSi₂ powder (Stem Chemicals, Inc., Newburyport, MA) was used as the active material. The MoSi₂ powder was drop-cast onto a 3 mm diameter glassy carbon, GC, electrode (CH Instruments, Austin, TX) similar to a previously reported method.¹ Here, 5 mg of the MoSi₂ powder was mixed with 1 mg Vulcan Carbon (Cabot Corporation, Boston, MA), 20 μ L of 5% Nafion solution (Sigma-Aldrich, St. Louis, MO), and 1 mL of ethanol. After sonicating the suspension for ~30 min, 20 μ L of the suspension was drop-cast onto the GC electrode and was allowed to dry in a jar saturated with ethanol for at least 24 hr. The LSVs were performed using a CHI 630 potentiostat (CH Instruments, Austin, TX) in a custom-designed U-shaped three-compartment cell. The tests were conducted using 1 M HClO₄ and the electrolyte was deaerated with Ar for at least 15 min. The electrochemical cell was sealed with parafilm prior to running the experiment. The LSVs were conducted at 1 mV/s using a Ag/AgCl reference electrode and a W wire counter electrode to avoid any Pt contamination caused by the

^v Current Address: Center for Environmentally Beneficial Catalysis; Department of Chemical & Petroleum Engineering; The University of Kansas; 4132B Learned Hall; 1530 W 15th St; Lawrence KS 66045

counter electrode. At least five forward and back cycles were performed to establish a constant current/potential curve for the MoSi₂ measurement, and shown is the last cycle for two separate experiments. Comparison LSVs on an uncoated GC disk electrode and a Pt disk electrode were also performed. To obtain the exchange current density, MathCAD was used to find best-fit values of j^0 and α when the experimental data is fit to the Tafel equation.

Figure S1. Log (j^0) for the hydrogen evolution reaction in acid vs. (A) thermal conductivity and (B) electrical resistivity for the elements. Thermal conductivity and electrical resistivity both resulted in low MIC values of 0.38 and 0.30 respectively, showing almost random correlations.

Figure S2. Cyclic voltammogram of a 25 μ m Pt UME in a solution of 0.1 M NaCl + 0.01 M HCl at 50 mV/s. This demonstrates that hydrogen evolution can occur from both proton reduction (~-0.3 V vs. Ag/AgCl) and water reduction (~-1.25 V vs. Ag/AgCl).

Figure S3. Linear sweep voltammograms of Pt disk electrode, a glassy carbon disk electrode, and two glassy carbon disk electrodes coated with MoSi₂ powder in a solution of 1 M HClO₄ at 1 mV/s. Also shown are best fit values for log (j^0) and α when the experimental data is fit to the Tafel equation.

Table S1: List of materials properties investigated in correlation studies with the exchange current density for hydrogen evolution in acid. Superscripts designate the source from which data was obtained.^{2, 3, 4} Also shown is the MIC value designating the strength of the correlation using the original value for Mn.

Property	MIC
Bulk Modulus/Gpa ²	0.76161
Melting Point/K ²	0.70805
Enthalpy of Atomization/kJ mol ⁻¹²	0.67805
Valence P-Orbital Radius (max)/pm ²	0.65485
Boiling Point/K ²	0.65357
Boiling Point/C ³	0.64859
Rigidity modulus/Gpa ²	0.63552
Enthalpy of Vaporization/kJ mol ⁻¹²	0.62461
Valence F-Orbital Radius (max)/pm ²	0.61751
Heat of Vaporization/kJ mol ⁻¹³	0.60397
Radius-Metallic/pm ²	0.57003
Heat of Fusion/kJ mol ^{-1 3}	0.56485
Linear Expansion Coefficient/10 ⁶ K ⁻¹²	0.55556
Valence S-Orbital Radius (max)/pm ²	0.55078
Number e- In Sixth Orbital ³	0.55034
Young's Modulus/Gpa ²	0.54625
Hardness - Brinell/MN m ⁻²²	0.54356
Enthalpy of Fusion/kJ mol ⁻¹²	0.53653
Heat of Sublimation/kJ mol ^{-1 3}	0.52384
Modulus of Elasticity/Gpa ⁴	0.52277
Molar Volume/cm ³²	0.50768
Tensile Strength-Ultimate/MPa ⁴	0.49343
Density/kg m ^{-3 2}	0.48479
Heat Capacity/J deg ⁻¹ mol ^{-1 3}	0.47706
Mineralogical Hardness/Moh Scale ²	0.47026

Property	MIC	
Valence D-Orbital Radius (max)/pm ²	0.43881	
Number e- In Fifth Orbital ³	0.42286	
Electronegativity ³	0.41545	
Entropy/J deg ⁻¹ mol ^{-1 3}	0.41175	
Velocity of Sound/m s- ¹²	0.40637	
Atom Radius/pm ³	0.40253	
Element Bond Length/pm ²	0.39139	
Thermal Conductivity/W m ⁻¹ K ^{-1 2}	0.38321	
Number e- In Last Orbital ³	0.37644	
Poisson's Ratio ²	0.36178	
Electron Affinity/kJ mol ⁻¹²	0.36126	
Reflectivity/% ²	0.35313	
Hardness - Vickers/MN m ⁻²²	0.35277	
Superconductivity Temperature/K ²	0.34243	
Electronegativity/Pauling Scale ²	0.34231	
Proton Transfer pK_1^3	0.31418	
Refractive Index ²	0.31127	
Electrical resistivity/ $10^{-8} \Omega m^2$	0.2993	
Ionic Radius (Pauling)/pm ²	0.29354	
Number e- In Fourth Orbital ³	0.28584	
1st Ionization Energy/kJ mol ^{-1 3}	0.27404	
Number e- In Third Orbital ³	0.27394	
Single Bond Radius/pm ³	0.24884	
Covalent Radius/pm ²	0.23956	
Van der Waals Radius/pm ²	0.12369	

Table S2: Ranking of the elements in order of highest to lowest exchange current densities for the hydrogen evolution reaction in acid. Also listed are the corresponding $\log (j^0)$, melting point (MP) and bulk modulus (BM). Highlighted elements fall within both optimum ranges (MP 1800 - 2750 K & MP >180 GPa).

Name	Rank	$\log(j^0)$	MP (K)	BM (GPa)
Pd	1	-2.4	1828.05	180
Rh	2	-2.5	2237	380
Ir	3	-3.3	2739	320
Pt	4	-3.3	2041.4	230
Ru	5	-3.3	2607	220
Os	6	-4	3306	418
Tc	7	-4.1	2430	297
Mn	8	-4.5	1519	120
Со	9	-4.9	1768	180
Re	10	-5.1	3459	370
Ni	11	-5.2	1728	180
Au	12	-5.7	1337.33	220
Fe	13	-5.8	1811	170
Si	14	-6	1687	100
V	15	-6.2	2183	160
Ag	16	-6.4	1234.93	100
Cr	17	-6.4	2180	160
W	18	-6.4	3695	310
Мо	19	-6.5	2896	230
Zr	20	-6.7	2128	83.3
Ti	21	-6.9	1941	110
As	22	-7.3	1090	22
Nb	23	-7.3	2750	170
Cu	24	-7.4	1357.77	140
Te	25	-7.5	722.66	65
Al	26	-7.75	933.47	76
Та	27	-7.8	3290	200
Ge	28	-8.7	1211.4	77.2
Sb	29	-8.7	903.78	42
Sn	30	-9.2	505.08	58
Ga	31	-9.8	302.91	56.9
Bi	32	-10.2	544.4	31
Zn	33	-10.5	692.68	70
In	34	-10.9	429.75	41.4
T1	35	-11.5	577	43
Hg	36	-11.9	234.32	25
Cd	37	-12	594.22	42
Pb	38	-12.6	600.61	46

Supporting Information References

¹ Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Shao-Horn, Y., Electrocatalytic Measurement Methodology of Oxide Catalysts Using a Thin-Film Rotating Disk Electrode *J. Electrochm. Soc.*2010, *157*, B1263.

² Winter, M. WebElements: The Periodic Table on the Web. http://www.webelements.com

(accessed Feb 8, 2012).

³ Lange's Handbook of Chemistry 16th ed.; McGraw-Hill Professional Publishing: New York,

NY, USA 2005.

⁴ Matweb Material Property Data. http://www.matweb.com (accessed Mar 8, 2012).