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Koutecky-Levich Approach to Relating Steady State Current Densities

The classic Koutecky-Levich approach, almost always reserved for rotating disk
electrode (RDE) studies,' can be derived for a UME and a one electron reduction (O + ¢ — R)
with irreversible kinetics by assuming the system in question satisfies both relations:

Jj=Fmg [CS - CO,x:O]
S1
j = Fk°Co e/ EE")

where F is the Faraday, mo the mass transfer coefficient of O, C; the bulk concentration of O,
Cox=0 the concentration of O at the electrode surface, k" the standard rate constant of the

reaction, a the transfer coefficient, E the applied potential, £’ the formal potential of the

. F
reaction, and f = — = ——

el By defining a mass transfer limited current density, j,;,, one can
b

write:
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Plugging this expression for Cp .-y into the second expression in S1 yields:

j=FkoC; (1 - L) e=af (E-E”) S3

Jmt
Defining a kinetic limiting current density, j,, = Fk°Cie~* E~E®) and rearranging yields
Equation S4 (Equation 2 in the main text):
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Simmons Model for Tunneling in Planar Metal-Insulator-Metal (MIM) Structures

Following Simmons, a general form for the tunneling current from metal 1 to metal 2 in a

planar MIM structure can be written as:*”

jr=a [[[ v ®l1 - £, - P Bk ss

where ¢ is the elementary charge, v,p; is a velocity-weighted density of states (DOS) in metal 1,
n 1s the applied overpotential (bias), f1/f> represent the probability of a state with momentum k&
being occupied in metal 1/2 according to Fermi-Dirac statistics, and P; is the probability of
tunneling through the barrier. According to free electron theory, the DOS of metal 1, p;, can be

expressed as:

=1 S6

which is unitless in k-space (cm  wavevector °). The velocity weighted DOS, v,p,, is then:
1dE,

" hdk,
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The form of jrgiven in Equation S5 can then be expressed in terms of energy by decomposing k

into parallel (ky) and “transverse” (k¢) components:

hz
E=Ex+Et=%(k,2€+kt2)

ki = k2 + kZ S8
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d k = ktdkxdktdet = ﬁdkxdEtdet
Combining terms, jis then:
. _2qm
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When the geometry is symmetric with respect to 6, jr can be integrated to yield:
) 4tgm
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The measured current density (J) is then the difference between the forward and reverse current

densities:

4
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According to Fermi-Dirac statistics, the probability of occupation for an electronic state in a
metal with energy E is:
1
fE) =—F=% S12
1+e kT
At 0 K, A(E) effectively becomes a step function:

(1, E<E
f(E)—{0 E>E, S13

)

Equation S11 can then be simplified to:*
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The tunneling probability, P,, is taken to be:

P, = e~ 2Pw

t =
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where E} is the energy level of the tunneling barrier (the conduction band edge in the case of

electron tunneling through a semiconductor layer such as TiO,). The Simmons model treats the

trapezoidal tunneling barrier as a rectangular barrier with an average potential, E,. It should also

be noted that the absence of any prefactor before the exponential in Equation S15 implies the

WKB approximation is being invoked, which is formally valid only when the tunneling barrier

potential varies slowly with x.” Taking this form of P, and making the substitution A =

1/2
2w (Zh—zl) , J then becomes:

4tgm
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Each of these integrals can be evaluated in a straightforward manner through integration by parts

to yield:
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. . . & F1/2 . .
I, can be simplified by noting that e ~4(E»—EF —am? 5 o=ABY" for typical parameter values (i.e.,

2o~ A(Ep—Ex)*/?
13 =

Ep+qn

Ep

E,—Epr~1eVand A ~ 10 eV~1/2);
2 _ _
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I; can be simplified by truncating the expression inside the brackets to include the 4° and 4>

terms only. /5 can then be evaluated to yield:

2 _ _ _
ls = F{[3EF +3qn — 2By + A(Er + qu) (B, — Ep — qu)/?]e~4Es=Er=an/?
S19
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J can then be evaluated:
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Making the substitutions ¢ = E, — Ep — ? and A = 2aw, one arrives at the famous result of

Simmons:

_ q @ -2a <p+ﬂ 1/Zw _ _ ﬂ —-2a (p—M 1/zw
I~ (o4 ) o= G
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A linear J-5 relation can be found for small overpotentials. This can be done by assuming
n is small and finding ((p + 7) =@ (1 + E) through series expansion. Substitution into

the above expression for J and simplification yields:

awqn awqgn
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Expanding the exponentials (e = 1 + cn) and simplifying results in:
q°’n 1/2
Jun =523 e 200 w1 — qp1/2w)| S23
When a@/?w > 1, this simplifies to:
aa?\ o1/2
Jun = -1 (ﬁ)%e “2ap*w S24

Geometric Correction to the TUME System
The tunneling current between a portion of the UME surface, d4, and the NP will be

assumed to follow Equation S24. The tunneling current in the TUME system is then:
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where the variation in tunneling distance with r, w(r) = wy + 1, — (r¢ — r2)Y/2, has been

incorporated into J;,. Substituting for Jj;, and simplifying results in:

To 1/2
2..1/2 Za(pl/z(rz—rz)
leyn = =1 S e_2a¢1/2(wo+n))f = 0 dr S26
h wo + 1 — (¢ — r2)1/2
0
Making the substitution u = (r¢ — r2)1/2;
To
2,.1/2 2ap/?y
itun = -7 <—aq ¢ >e—2a¢1/2(Wo+To)f _ue du S27
h Wo+19—UuU
The integral (y) in Equation 27 can be separated further:
To 1/2 To
ue?a¢ U wo + 7
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0
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0 0
Lettingv =u — wy — 19:
"o 1/2 TO_(W0+T0) 62a¢1/2(v+w0+r0)
x= —f e2a? " Uy — (wg + 19) f - dv
0 —(wg+1p)
S29
To —Wyp 1/2
2apt “v
X=- f €209ty — (wy + 1r)e200™*Wotro) L
0 —(wo+7o)
Yet another substitution, t = —2a@/?v, yields
7o 2ap1 2w,
-t
¥ = _f eza‘l’l/zudu — (wp + ro)eza(pi/z(w0+ro) f ert S30
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To o <]

-t -t
xX= —f e209" gy — (wy + 1p)e2a0™*Wotro) f ert - f ert
0 2a91/2(wy+rg) 2ap/2w,
The first integral can be integrated directly to give:
1 1/2
— _ L2apter
X= 2a<p1/2 [1 € 0]
0 o S31
1/2 e—t e—t
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The other two integrals are “exponential integrals” of the form:
Ei(x) = f Tdt S32
X
x can then be rewritten as:
1 1/2
— _ L2apter
X - Za(pl/z {1 e 0
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For typical parameter values, this can be further simplified to:
ypical p Y
e2a<p1/2ro 1/2
X = W{Zafpl/z(wo + ro)eza‘p W°E1(2a(p1/2W0) — 1} S34

since E; (2ap?wy) » E;(2ap'?[w, + 1,]) and 200?10 55 1. A simple analytical form for
E; is then desired over typical values for 2a@/2w,. For 2ap2 ~ 1A~! and 1A < w, <

100 A, an approximation for £, over the range 1 < x < 100 would suffice. This can be

accomplished by fitting E; over by a function of the form:®

Ei(x) =

e ™ (po + p1x + pax® + pax® + -
_(po P1 D2 D3 ) S35

X \qo+ q1x + qz2x% + q3x° + -+
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A simple two parameter fit is sufficient for the desired accuracy level over the range considered

(ca. 1 % error):

e X /x+0.486
B () = (_) 336
10 ==~ ¥ 151
Incorporating this into y yields:
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Figure S1. Comparison of the analytical approximation of iwn (red line) to numerical calculations
including full angular resolution of tunneling between the electrode and NP (black points) for
various values of rpand wy. ¢ = 1.3eV,n =-100 mV.

Finally, iy, is then:

i _ _ﬁ WO + ro Za(pl/ZWO + 04’86 _ 1 e—2a<p1/2Wo S38
tun 2h | wy \2a¢12w, + 1.451

Or, if normalized by the NP area:

S39

o dtun q%n [we + 1y (2a9 2w, + 0.486 _ 4] p-2a0t/2w,
Joun = 42 T T 8nhaZ | we  \2ag /2w, + 1.451
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The wvalidity of this approximate form for j,, was checked by comparing calculated
values to numerical calculations which account explicitly for the dependence of tunneling

distance on the angle of the exiting electron path:

2

10) = 5 {[[ 1A = o8 - an) Po(E,6,6,1)E sin 26 aavd

/2
]1

- qn_ 2
Pt(E, 0, o, T') =e ZaWt(G,d),r)[Eb-;-z E cos* 6 »

Wt(el ¢: T') = {]/(9, ¢' T) - []/(9, ¢' T)Z - r2 - W(Z) - 2TOWO]} cos 6
v(6,¢,r) =rsinfcos¢p + (wy + 1y) cos b
The results are summarized in Figure S1. Over the range of interest, the derived analytical form

of i,,, was found to deviate less than 10 % from the numerical calculations.
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