## Supporting Information

## A Liquid Junction Photoelectrochemical Solar Cells Based on p-Type MeNH<sub>3</sub>PbI<sub>3</sub> Perovskite with 1.05 V Open-Circuit Photovoltage

Hsien-Yi Hsu<sup>1†</sup>, Li Ji<sup>1,2†</sup>, Hyun S. Ahn<sup>1</sup>, Ji Zhao<sup>1</sup>, Edward T. Yu<sup>2</sup> and Allen J. Bard\*

<sup>1</sup>Center for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States

<sup>2</sup>*Microelectronics Research Center, Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78712, United States* 

**Materials.** Methylamine (CH<sub>3</sub>NH<sub>2</sub>, 2M in methanol, Alfa Aesar), hydroiodic acid (HI, 57 wt% in water, Alfa Aesar), Lead iodide (PbI<sub>2</sub>, 99.9985% metals basis, Alfa Aesar), Lithium iodide (LiI, 99.99%, Sigma-Aldrich), Iodine (I<sub>2</sub>, 99.999% metals basis, Alfa Aesar), Tetrabutylammonium iodide (TBAI,  $\geq$  99.0%, Sigma-Aldrich), Ferrocene (Fc, 99.5 %, Alfa Aesar), ferrocenium hexafluorophosphate (FcPF<sub>6</sub>, 97%, Sigma-Aldrich), Decamethylferrocene (DMFc, 99 %, Alfa Aesar), p-Benzoquinone (BQ,  $\geq$ 98 %, Alfa Aesar), N,N-Dimethylformamide (DMF,  $\geq$ 99.9 %, Sigma-Aldrich), Acetonitrile (MeCN, anhydrous,  $\geq$ 99.9 %, Sigma-Aldrich), Chloroform (CHCl<sub>3</sub>, anhydrous,  $\geq$ 99.9 %, Sigma-Aldrich), Methylene chloride (CH<sub>2</sub>Cl<sub>2</sub>, anhydrous,  $\geq$ 99.9 %, Sigma-Aldrich), Tetrahydrofuran (THF, anhydrous,  $\geq$ 99.9 %, Sigma-Aldrich), Ethyl acetate (EA, anhydrous,  $\geq$ 99.8 %, Sigma-Aldrich), Toluene (anhydrous,  $\geq$ 99.9 %, Sigma-Aldrich), Dimethyl sulfoxide (DMSO, anhydrous,  $\geq$ 99.9 %, Sigma-Aldrich). Tetrabutylammonium hexafluorophosphate (TBAPF<sub>6</sub>,  $\geq$ 99.9 %, Sigma-Aldrich). FTO-coated glass was obtained from Pilkington (Toledo, OH) as a substrate of the electrodes. The 15 × 15 mm squares were

cleaned by successive sonication in ethanol and 2-propanol and rinsed with deionized water. Duocel Reticulated Vitreous Carbon was used as a counter electrode (RVC, Ergaerospace)



Figure S-1. XRD of p-MeNH<sub>3</sub>PbI<sub>3</sub>



Figure S-2. A silver wire immersed in 0.01 M silver nitrate in MeCN with a 0.10 M TBAPF<sub>6</sub> in  $CH_2Cl_2$  salt bridge



Figure S-3. Uncompensated resistance of p- MeNH<sub>3</sub>PbI<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub> containing 0.1M TBAPF<sub>6</sub>.



Figure S-4. Time dependence of the photocurrent of a p-MeNH<sub>3</sub>PbI<sub>3</sub>/BQ (2 mM), BQ<sup>-</sup> (2 mM)/carbon PEC cell at 0.5 V. The p-MeNH<sub>3</sub>PbI<sub>3</sub> photoelectrode was irradiated by a 150 mW/cm<sup>2</sup> Xe lamp. The optical path through the solution was about 0.3 mm.