Supporting information

Electrochemistry and Electrogenerated Chemiluminescence of 1,3,5-Tri(anthracen-10-yl)-benzene-centered Starburst Oligofluorenes

Honglan Qi,^{†,‡} Chengxiao Zhang,[‡] Zhi Huang,[§] Lei Wang^{*},[§] Weina Wang,[‡] Allen J Bard^{*†}

[†]Center for Electrochemistry, Department of Chemistry and Biochemistry, The University of Texas, Austin, Texas 78712, United States

[‡]Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R China

§ Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R China

E-mail: ajbard@mail.utexas.edu

Figure S-1 CVs of 0.7 mM T1 with different scan rates at a Pt electrode with 0.034 cm² area. Experimental conditions: MeCN:Bz (v:v=1:1) solution containing 0.1 M TBAPF₆.

Figure S-2. Experimental and simulated oxidation waves for 0.7 mM T1 at different scan rates. The model for these oxidation simulations: EEE, $k_1^0=0.01$ cm/s, $k_2^0=10000$ cm/s, $k_3^0=10000$ cm/s. Simulated data: $E^0_{1,ox}=1.14$ V, $E^0_{2,ox}=1.18$ V, $E^0_{3,ox}=1.22$ V; Diffusion coefficient: 6×10^{-6} cm²/s, uncompensated resistance 1400 Ω , capacitance 6×10^{-7} F. Experimental conditions: MeCN:Bz (*v:v*=1:1) solution containing 0.1 M TBAPF₆, platinum electrode area: 0.034 cm².

Figure S-3. Experimental and simulated reduction waves for 1.1 mM T1 at different scan rates. The model for these oxidation simulations: EEEC, $k_1^0=0.01$ cm/s, $k_2^0=0.005$ cm/s, $k_3^0=0.005$ cm/s, $k_f=1$ s⁻¹. Simulated data: $E_{1,red}^0=-2.10$ V, $E_{2,red}^0=-2.16$ V, $E_{3,red}^0=-2.22$ V; Diffusion coefficient: 6×10^{-6} cm²/s, uncompensated resistance 1400 Ω , capacitance 1×10^{-7} F. Experimental conditions are same as Figure S-2.

Figure S-4. CV of 0.94 mM of T1 (a); CV of 0.6 mM T2 (b); CV of 0.56 mM T3 (c); Scan rate, 0.5 V/s. Experimental conditions: MeCN:Bz (v:v=1:1) solution containing 0.1 M TBAPF₆, platinum electrode area is 0.034 cm².

Figure S-5. Calculated frontier molecular orbitals of HOMOs and LUMOs for **T1** by DFT (B3LYP/6-31G(d)).

Figure S-6. Cyclic voltammograms of 0.7 mM T1 in MeCN:Bz(1:1) solution containing 0.1 M TBAPF₆. Gold UME: r=10 μm. Scan rate: 10 mV/s.

Figure S-7. Experimental and simulated oxidation waves for 0.3 mM T2 at different scan rates. The model for these oxidation simulations: EEE, $k_1^0=0.01$ cm/s, $k_2^0=0.01$ cm/s, $k_3^0=0.1$ cm/s. Simulated data: $E^0_{1,ox}=1.11$ V, $E^0_{2,ox}=1.16$ V, $E^0_{3,ox}=1.18$ V; Diffusion coefficient: 6.0×10^{-6} cm²/s, uncompensated resistance 1799 Ω , capacitance 1×10^{-7} F. Experimental conditions are same as Figure S-2.

Figure S-8. Experimental and simulated reduction waves for 0.3 mM T2 at different scan rates. The model for these oxidation simulations: EEEC, $k_1^0=0.01$ cm/s, $k_2^0=0.01$ cm/s, $k_3^0=0.005$ cm/s, $k_f=2$ s⁻¹. Simulated data: $E^0_{1,red}=-1.98$ V, $E^0_{2,red}=-2.03$ V, $E^0_{3,red}=-2.08$ V; Diffusion coefficient: 6.0×10^{-6} cm²/s, uncompensated resistance 449 Ω , capacitance 6×10^{-7} F. Experimental conditions are same as Figure S-2.

Figure S-9. Calculated frontier molecular orbitals of HOMOs and LUMOs for T2 by DFT

(B3LYP/6-31G(d)).

Figure S-10. Cyclic voltammograms of 0.64 mM T2 in THF solution containing 0.1 M TBAPF₆. (a) at Gold UME: r=10 μ m, scan rate: 5 mV/s; (b) at platinum electrode 0.034 cm², Scan rate: 0.5 V/s.

Figure S-11. Calculated frontier molecular orbitals of HOMOs and LUMOs for **T2** by DFT (B3LYP/6-31G(d)).

Figure S-12. Experimental and simulated oxidation waves for 0.7 mM T3 at different scan rates. The model for these oxidation simulations: EEEEEE, $k^0=10^4$ cm/s. Simulated data: $E^0_{1,ox}=1.16$ V, $E^0_{2,ox}=1.2$ V, $E^0_{3,ox}=1.24$ V, $E^0_{4,ox}=1.26$ V, $E^0_{5,ox}=1.3$ V, $E^0_{6,ox}=1.32$ V; Diffusion coefficient: 6×10^{-6} cm²/s, uncompensated resistance 617 Ω , capacitance 1×10^{-6} F. Experimental conditions are same as Figure S-2.

Figure S-13. Experimental and simulated reduction waves for 0.54 mM T3 at different scan rates. The model for these oxidation simulations: EEEEEE, $k^0=10^4$ cm/s. Simulated data: $E^0_{1,red} = -2.05 \text{ V}, E^0_{2,red} = -2.09 \text{ V}, E^0_{3,red} = -2.13 \text{ V}, E^0_{4,red} = -2.17 \text{ V}, E^0_{5,red} = -2.21 \text{ V}, E^0_{6,red} = -2.25 \text{ V};$ Diffusion coefficient: $6 \times 10^{-6} \text{ cm}^2/\text{s}$, uncompensated resistance 611 Ω , capacitance 2×10^{-7} F. Experimental conditions are same as Figure S-2.

Figure S-14. Cyclic voltammograms of 0.4 mM T3 in THF solution containing 0.1 M TBAPF₆. (a) at platinum electrode 0.034 cm², Scan rate: 0.5 V/s; (b) at Gold UME: $r=10 \mu m$, scan rate: 5 mV/s.

Figure S-15. Simultaneous ECL and CV profiles for 0.8 mM T1 (a), 0.5 mM T2 (b) and 0.8 mM T3(c) in MeCN:Bz (*v*:*v*=1:1) solution containing 0.1 M TBAPF₆. Scan rate, 0.5 V/s.

Figure S-16. Normalized PL (red) and ECL (blue) spectra of T1 (a), T2 (b) and T3 (c) in MeCN:Bz(1:1) solution containing 0.1 M TBAPF₆.