## **Optimization of Lead-free Organic-inorganic Tin(II) Halide Perovskite Semiconductors by Scanning Electrochemical Microscopy**

Hsien-Yi Hsu<sup>†§</sup>, Li Ji<sup>†‡§</sup>, Minshu Du<sup>†</sup>, Ji Zhao<sup>†</sup>, Edward T. Yu<sup>‡</sup> and Allen J. Bard<sup>\*†</sup>

## **Supporting Information**



**Figure S1.** Current density of unencapsulated p-MASnI<sub>0.5</sub>Br<sub>2.5</sub> and p-MASnI<sub>3</sub> perovskite PEC solar cells in ambient atmosphere. The MASnI<sub>0.5</sub>Br<sub>2.5</sub> and p-MASnI<sub>3</sub> photoelectrodes was irradiated by a 150 mW/cm<sup>2</sup> Xe lamp. The optical path through the solution was about 0.3 mm.



**Figure S2.** Normalized efficiency of sealed p-MASnI<sub>0.5</sub>Br<sub>2.5</sub> and p-MASnI<sub>3</sub> perovskite PEC solar cells under Ar. The MASnI<sub>0.5</sub>Br<sub>2.5</sub> and p-MASnI<sub>3</sub> photoelectrodes was irradiated by a 150 mW/cm<sup>2</sup> Xe lamp. The optical path through the solution was about 0.3 mm.



**Figure S3.** Current density of sealed p-MASnI<sub>0.5</sub>Br<sub>2.5</sub> and p-MASnI<sub>3</sub> perovskite PEC solar cells under Ar. The MASnI<sub>0.5</sub>Br<sub>2.5</sub> and p-MASnI<sub>3</sub> photoelectrodes was irradiated by a 150 mW/cm<sup>2</sup> Xe lamp. The optical path through the solution was about 0.3 mm.