## Supporting Information

# Visible Light Photoelectrochemical Properties of $\mathrm{PbCrO}_{4}$, $\mathbf{P b}_{\mathbf{2}} \mathbf{C r O}_{5}$ and $\mathrm{Pb}_{5} \mathbf{C r O}_{8}$ 

Heung Chan Lee, ${ }^{\dagger}$ Sung Ki Cho, ${ }^{\S}$ Hyun S. Park, ${ }^{\dagger}$ Kimin Nam, ${ }^{\square}$ and Allen J. Bard ${ }^{\|, 1}$<br>${ }^{\dagger}$ Energy Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea<br>${ }^{\text {§ }}$ Department of Energy and Chemical Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si, Gyeongsangbuk-do 730-701, Republic of Korea<br>${ }^{\ddagger}$ Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul 02792, Republic of Korea<br>Department of Chemistry, Mokpo National University, 1666 Yeongsan-ro, Cheonggyemyeon, Muan-gun, Jeonnam 58554, Republic of Korea<br>||Center for Electrochemistry, Department of Chemistry and Biochemistry, The University of Texas at Austin, 105 E $24^{\text {th }}$ Street, Stop A5300, Austin, TX 78712, USA

[^0]

Figure S1. Picture of (a) $\mathrm{PbCrO}_{4}$, (b) $\mathrm{Pb}_{2} \mathrm{CrO}_{5}$, and $\mathrm{Pb}_{5} \mathrm{CrO}_{8}$ thin film electrodes on 1 x 1.5 cm FTO glass.


Figure S2. XRD patterns of $\mathrm{Pb}_{2} \mathrm{CrO}_{5}$ (phoenicochroite, $\mathrm{PDF} \# 84-0678$, $\ddagger$ ) $\mathrm{Pb}_{5} \mathrm{CrO}_{8}$ (lead chromium oxide, PDF \#47-0678, $\dagger$ ), and $\mathrm{PbCrO}_{4}$ (Chrocoite, PDF \#47-2304) and patterns from the FTO substrate (*) are also indicated.


Figure S3. SEM image of (a) $\mathrm{PbCrO}_{4}$, (b) $\mathrm{Pb}_{2} \mathrm{CrO}_{5}$ and (c) $\mathrm{Pb}_{5} \mathrm{CrO}_{8}$


Figure S 4 . Action spectrum of $\mathrm{PbCrO}_{4}$ (blue), $\mathrm{Pb}_{2} \mathrm{CrO}_{5}$ (Red) and $\mathrm{Pb}_{5} \mathrm{CrO}_{8}$ (green). Photocurrent of monochromic light were recorded when electrode potential was 0.3 V vs $\mathrm{Ag} / \mathrm{AgCl}$.


Figure S5. Power spectrum of the incident light generated from 150 mW Xe lamp measured at where a photoelectrode is placed.

Tauc plot calculation from PEC.
To get Tauc plots electrochemically, absorption coefficient (or absorbance) in Figure 3 needs to be replaced to a form of photoelectrochemical values. In the literature (35) photocurrent is directly used as absorbance while in the literature (12) IPCE (external quantum efficiency) was used.

We used absorbed photon-to-current conversion efficiency (APCE, internal quantum efficiency) for Tauc plot.
$\eta=\mathrm{IPCE} /$ Absorptance $=\mathrm{IPCE} / 1-\mathrm{TR}=\mathrm{IPCE} /\left(1-10^{-\mathrm{A}}\right)$


Figure S6. APCE plots of $\mathrm{PbCrO}_{4}$ (blue), $\mathrm{Pb}_{2} \mathrm{CrO}_{5}$ (red) and $\mathrm{Pb}_{5} \mathrm{CrO}_{8}$ (green). The photocurrents at each wavelength were measured at 0.3 V vs $\mathrm{Ag} / \mathrm{AgCl}$ in 0.1 M $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{3}$ aqueous solution.


[^0]:    ${ }^{1}$ To whom correspondence should be addressed. Email: ajbard@mail.utexas.edu. Phone: 512-471-3761. Fax: 512-471-0088.

