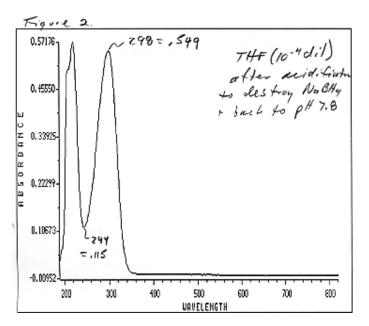
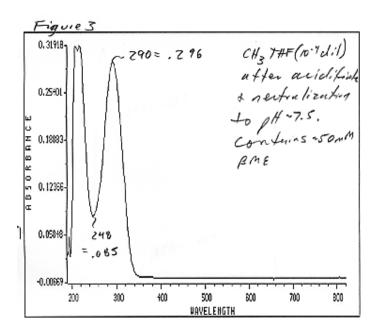

Synthesis of (6-R,S)5-CH₃-H₄PteGlu_n from PteGlu_n

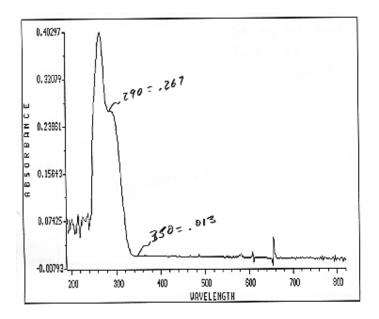

- **References**: Yeo, E. J., and Wagner, C. (1992) Purification and properties of pancreatic glycine N-methyltransferase. *J Biol Chem* 267, 24669-24674; Nando Todari, A., and Marazza, N. F. (2000) Process for the reduction of pterins. (US Patent 6162914) Cerbios-Pharma S.A., Switzerland
- **Outline:** This method uses NaBH₄ to reduce folic acid (PteGlu_n) to H₄PteGlu_n with the modification of the water-soluble $Pb(NO_3)_2$ to catalyze the reduction. The inclusion of $Pb(NO_3)_2$ allows less NaBH₄ to be used. The H₄PteGlu_n is then condensed with HCHO to produce 5,10-methylene-THF (CH₂-H₄PteGlu_n), which is then reduced with NaBH₄ to 5-CH₃-H₄PteGlu_n.

Method:

- 1. Weigh 40 μ mol PteGlu_n (20 40 mg depending on # of glutamates) into a 2 ml graduated free-standing screwcap tube with round bottom. Add 200 μ l Pb(NO₃)₂ (0.265 mM) prepared as follows:
 - a. dissolve 20-30 mg Pb(NO₃)₂ (Mallinkrodt) in ddH₂O to 8.8 mg/ml = 26.5 mM (use 1-2 μ l conc HCl to dissolve completely)
 - b. dilute 1:100 with 10 mM Tris-Cl, pH 7.5 to make 0.265 mM working stock
- Adjust pH to 7.5 with 5 N NaOH (15-35 μ l); spot small amounts on pH paper to check) and vortex to dissolve PteGlu_n (should get clear, dark yellow solution)(higher polyglu require considerable vortexing and more NaOH to dissolve completely). Check spectrum of 10⁻⁴ dilution in 10 mM Tris-Cl, pH 7.5 (see figure 1).



- 2. Add stir bar and move to cold room. Use tube rack to hold tube while stirring at top speed. Add 5 mg NaBH₄ (Sigma) (132 μ mol) in 25 μ l ddH₂O over 20 min (5 X 5 μ l aliquots). Maintain pH at 8.5-8.8 with 20% (w/v) citric acid (2-5 μ l per addition of NaBH₄). Once all NaBH₄ is added, move to room temp, flush tube with argon (or N₂), and stir at top speed in dark for 2 hrs.
- 3. Cool to 4°C, lower pH to 5.0 with 5 N HOAc (~20 μ l) to destroy excess NaBH₄ (some bubbling will occur). Bring pH back to 7.8 with 5 N NaOH. Product should be H₄PteGlu_n. Check spectrum of 10⁻⁴ dilution (see figure 2).



- 4. Add 6.4 μ l (80 μ mol) HCHO (37% soln), flush tube with argon, and incubate at 45°C, 15 min in dark to convert H₄PteGlu_n to CH₂-H₄PteGlu_n.
- 5. Add 10 mg NaBH₄ (264 μ mol) in 50 μ l ddH₂O over 20 min (5 X 10 μ l aliquots). Maintain pH at 8.5-8.8 with 20% (w/v) citric acid as before. Once all NaBH₄ is added, flush tube with argon and incubate at 45°C, 60 min in dark to reduce to 5-CH₃-H₄PteGlu_n.

6. Remove stir bar, cool to 4°C, add 2-mercaptoethanol to 50 mM (~1.4 μl of 14.3 M stock). Adjust pH to 5.0 with 5 N HOAc to destroy excess NaBH₄ (vortex till no more bubbling). Bring back to ~7.5 with 5N NaOH. Check spectrum of 10⁻⁴ dilution (see figure 3). Store under argon (or N₂) in dark at –20°C.

Notes: Starting material (PteGlu_n) has maxima at 282 (E = 23.4 mM⁻¹) and 350 nm (Fig. 1). $H_4PteGlu_n$ has a maximum at 298 nm (E = 30 mM⁻¹), and a min at 244 nm (Fig. 2). The final product (5-CH₃-H₄PteGlu_n) has a max at 292 nm (E = 31.7 mM⁻¹) and a min at 248 nm (Fig. 3). With PteGlu₁, this procedure gave ~93% yield, and the final product had less than 3% $H_4PteGlu_n$ based on its reaction with 5N HCl/60% formate:

Diluted 2 μ l of product into 200 μ l Tris, and then 10 μ l of this into 400 μ l Tris (7.5). Add 100 μ l 5N HCl/60% formate, heat at 80°C, 10 min, cool to RT and read (blank against buffer + HCl/formate). A peak at 350 nm is diagnostic of THF; lack of peak indicates CH₃-THF.