## Cobalamin-Dependent Methionine Synthase Assay

This protocol is based on the method developed by the Matthews lab [Drummond, J. T., Jarrett, J., Gonzalez, J. C., Huang, S., and Matthews, R. G. (1995) Anal. Biochem. 228, 323-329; Jarrett, J. T., Goulding, C. W., Fluhr, K., Huang, S., and Matthews, R. G. (1997) Methods Enzymol 281, 196-213]

The enzyme catalyzes the following reaction:

$$
\text { 5-CH3-THF }+ \text { L-homocysteine } \rightarrow \text { THF }+ \text { methionine }
$$

The product, THF, is detected spectrophotometrically following its conversion to 5,10-methenylTHF by heating with formate in acid:

$$
\mathrm{THF}+\text { formate } \rightarrow \mathrm{CH}^{+}-\mathrm{THF}+2 \mathrm{H}_{2} \mathrm{O}
$$

At acidic $\mathrm{pH}, \mathrm{CH}^{+}-$THF has an extinction coefficient of $26,500 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ at 350 nm

1. Add the following to $12 \times 75 \mathrm{~mm}$ glass tubes:

| $494 \mu \mathrm{~L}$ | $\mathrm{H}_{2} \mathrm{O}$ |
| ---: | :--- |
| $80 \mu \mathrm{~L}$ | $1.0 \mathrm{M} \mathrm{KPO}_{4}(\mathrm{pH} 7.2)$ |
| $40 \mu \mathrm{~L}$ | 500 mM DTT |
| $4 \mu \mathrm{~L}$ | 3.8 mM AdoMet |
| $4 \mu \mathrm{~L}$ | 100 mM L-homocysteine |
| $50 \mu \mathrm{~L}$ | enzyme sample |
| $80 \mu \mathrm{~L}$ | $500 \mu \mathrm{M}$ hydroxocobalamin |

mix well, then preincubate at $37^{\circ} \mathrm{C}$ for 5 minutes
2. Initiate reactions with $48 \mu \mathrm{~L} 4.2 \mathrm{mM} \mathrm{CH}_{3} \mathrm{THF}$
mix well, incubate at $37^{\circ} \mathrm{C}$ for 10 minutes.
3. Stop reactions with $200 \mu \mathrm{~L} 5 \mathrm{~N} \mathrm{HCl} / 60 \%$ formic acid mix well, then incubate at $80^{\circ} \mathrm{C}$ for 10 minutes in a heat block. Cool to room temperature.
4. Transfer each 1 ml reaction to 1.5 mL microcentrifuge tube and centrifuge at room temperature at top speed for 5 minutes to pellet precipitated protein, then measure absorbance at 350 nm (zero the instrument against water). This centrifugation step is not necessary for samples with low protein concentration.

Blanks -- two kinds of blanks can be used:
(i) The simplest is a "no enzyme" blank. Use $50 \mu 1$ of whatever buffer your sample was in. This is fine for monitoring column fractions or when all the samples have the same protein content/concentration (e.g. kinetics). This single blank can be subtracted from all of the
samples in the assay. The no enzyme blank is typically $0.280-0.300 \mathrm{~A}_{350}$ in our hands.
(ii) "minus homocysteine" blank. For every enzyme sample, a second set of tubes contains the same amount of enzyme, but minus homocysteine. Use $4 \mu l$ of $\mathrm{H}_{2} \mathrm{O}$ instead. This blank is necessary when measuring activity in crude extracts.

All samples and blanks should be performed in duplicate or triplicate. A standard curve for THF can be prepared under a given set of assay conditions to correct for variations in yield and linear range. For following activity in column fractions, etc., a standard curve is not necessary.

## Calculations

Activity in $\mathrm{nmol} / \mathrm{min}$ (milliunits, mU ) is calculated from the extinction coefficient of $\mathrm{CH}^{+}$- THF in acid $=26.5{\mathrm{X} 10^{-6} \mathrm{nM}^{-1} \text {, the volume of the reaction, and the time: }}_{\text {a }}$

$$
\text { Corrected } A_{350} \times\left(\frac{1.0 \mathrm{ml}}{26.5 \times 10^{-6} \mathrm{nM} \times 10 \mathrm{~min} \times 10^{3} \mathrm{ml} / \mathrm{L}}\right)=
$$

Corrected $A_{350} \times 3.774$

## Reagents

1. L-homocysteine

Dissolve 50 mg L-homocysteine thiolactone (Sigma) in $1.7 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$. Add 0.83 ml 0.8 M NaOH , bubble with argon for 5 min and incubate at $45^{\circ} \mathrm{C}, 6 \mathrm{~min}$. Acidify with 5.0 M acetic acid to pH 5 (check with pH paper); dilute to 3.3 ml with argon-bubbled $\mathrm{H}_{2} \mathrm{O}$ to yield $\sim 100 \mathrm{mM}$ solution. Store in 1 ml aliquots at $-80^{\circ} \mathrm{C}$.

Check actual concentration by titration with DTNB (see pp. 155 and 220 of Chemical Modification of Proteins, by Means and Feeny, Holden-Day, Inc., 1971):

- prepare 10 mM DTNB stock in $50 \mathrm{mM} \mathrm{K} \cdot \operatorname{Phos}(7.0)(39.6 \mathrm{mg} / 10 \mathrm{ml})$
$\cdot$ dilute 100 mM hcy stock $1: 100$ and add $50 \mu \mathrm{l}$ to $900 \mu 10.1 \mathrm{M} \mathrm{Na} \cdot$ Phos (8.0)
$\cdot$ add $50 \mu$ DTNB reagent. Stand 2-3 min, read at 412 nm .
-subtract buffer blank, divide corrected $\mathrm{A}_{412}$ by the extinction coefficient for the liberated thionitrobenzoate anion $\left(13.6 \mathrm{mM}^{-1}\right)$ to calculate actual L-homocysteine concentration in stock

2. ( $6 R, S$ )5-methyl-THF (monoglutamate form; calcium salt, Schircks Laboratories, Jona, Switzerland): prepare 4.2 mM stock in $8 \mathrm{mM} \mathrm{Na} \bullet$ Ascorbate. Store in dark under argon at $-20^{\circ} \mathrm{C}$
3. hydroxocobalamin (Sigma H-8017 or ICN 157408): dissolve to $500 \mu \mathrm{M}$ in $\mathrm{H}_{2} \mathrm{O}$. Store in dark at $4^{\circ} \mathrm{C}$.
4. $S$-adenosyl-L-methionine (chloride salt, Sigma or $p$-toluensulfonate salt, BASF): dissolve to 3.8 mM in 1 mM HCl . Store at $-70^{\circ} \mathrm{C}$.
5. formate/ HCl : slowly add 41.6 ml concentrated $\mathrm{HCl}(12 \mathrm{~N})$ to 58.4 ml of $88 \%$ formic acid.
